Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (5): 647-659    DOI: 10.3785/j.issn.1008-9209.2020.11.121
动物科学与动物医学     
浙江省2市动物源大肠埃希菌及肠球菌耐药性比较和分析
唐标1,2(),郝运1,2,林家辉3,王静鸽2,4,吉小凤1,2,钱鸣蓉1,2,杨华1,2()
1.浙江省农业科学院农产品质量安全危害因子与风险防控国家重点实验室,杭州 310021
2.浙江省农业科学院农产品质量安全与营养研究所,杭州 310021
3.浙江理工大学生命科学与医药学院,杭州 310018
4.青海大学农牧学院,西宁 810016
Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province
Biao TANG1,2(),Yun HAO1,2,Jiahui LIN3,Jingge WANG2,4,Xiaofeng JI1,2,Mingrong QIAN1,2,Hua YANG1,2()
1.State Key Laboratory of Quality Safety and Risk Factor Prevention and Control of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2.Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
3.College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
4.College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
 全文: PDF(1068 KB)   HTML
摘要:

为了解2020年浙江省金华市和台州市动物源细菌耐药情况,于2020年5月分别从这2市7个畜禽养殖场随机采集畜禽肛拭子样品284份,使用选择性培养基分离大肠埃希菌和肠球菌,通过基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF-MS)对其进行鉴定,并使用微量肉汤稀释法检测这2种细菌的最小抑菌浓度(minimal inhibitory concentration, MIC)。结果显示:金华市大肠埃希菌对四环素的耐药率最高(87.5%),其次是对磺胺异噁唑(81.2%),对黏菌素的耐药率最低(0%);台州市大肠埃希菌对磺胺异噁唑的耐药率最高(97.1%),对美罗培南和黏菌素的耐药率均为0%。金华和台州2市肠球菌对磺胺异噁唑耐药率均为100%,其次是对泰妙菌素,均为98.6%,2市未检测到对奥格门汀和万古霉素耐药的肠球菌。此外,从整体耐药率、MIC分布和耐药谱型上看,台州市的细菌耐药性水平比金华市的高。总之,通过对2个地级市的畜禽养殖中细菌耐药性水平进行监测和对比发现,2市的动物源大肠埃希菌和肠球菌耐药水平较高且存在差异。因此,通过农业主管部门的兽药减量化行动,持续监测耐药性动态变化十分必要。

关键词: 畜禽大肠埃希菌肠球菌耐药性金华市台州市    
Abstract:

To investigate the antimicrobial resistance of bacteria from animals in Jinhua City and Taizhou City of Zhejiang Province in May of 2020, a total of 284 anal swab samples were randomly collected from seven livestock and poultry farms in the two cities, respectively. Escherichia coli and Enterococcus were isolated by selective culture media and were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The minimal inhibitory concentration (MIC) was determined by broth microdilution method. The results showed that the antimicrobial resistance rate of E. coli to tetracycline was the highest (87.5%), followed by sulfamethoxazole (81.2%), while the antimicrobial resistance rate to colistin was the lowest (0%) in Jinhua City. In addition, the antimicrobial resistance rate of E. coli to sulfamethoxazole was the highest (97.1%), and the resistance rates to meropenem and colistin were both 0% in Taizhou City. The antimicrobial resistance rate of Enterococcus to sulfamethoxazole was 100% in both cities, followed by tamoxifen (98.6%). No amoxicillin/clavulanate and vancomycin resistant Enterococcus was found in the two cities. In terms of the overall antimicrobial resistance rate, MIC distribution and antimicrobial resistance pattern, the level of antimicrobial resistance in Taizhou was higher than that in Jinhua. In conclusion, through monitoring and comparing the level of antimicrobial resistance in livestock and poultry breeding in two cities, it is found that the levels of antimicrobial resistance of E. coli and Enterococcus from animals are high and different. Therefore, continuous surveillance of antimicrobial resistance dynamics is essential through veterinary antibiotics reduction initiatives by agricultural authorities.

Key words: livestock and poultry    Escherichia coli    Enterococcus    antimicrobial resistance    Jinhua City    Taizhou City
收稿日期: 2020-11-12 出版日期: 2021-10-27
CLC:  S 852.6  
基金资助: 浙江省重点研发计划(2020C02031);国家自然科学基金青年科学基金(31700007);省部共建农产品质量安全危害因子与风险防控国家重点实验室项目(2010DS700124-ZZ2008)
通讯作者: 杨华     E-mail: tb_411@163.com;yanghua@zaas.ac.cn
作者简介: 唐标(https://orcid.org/0000-0002-3605-4022),E-mail:tb_411@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐标
郝运
林家辉
王静鸽
吉小凤
钱鸣蓉
杨华

引用本文:

唐标,郝运,林家辉,王静鸽,吉小凤,钱鸣蓉,杨华. 浙江省2市动物源大肠埃希菌及肠球菌耐药性比较和分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 647-659.

Biao TANG,Yun HAO,Jiahui LIN,Jingge WANG,Xiaofeng JI,Mingrong QIAN,Hua YANG. Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 647-659.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.11.121        http://www.zjujournals.com/agr/CN/Y2021/V47/I5/647

图1  质控菌株的基质辅助激光解吸电离飞行时间质谱鉴定图谱
图2  金华市和台州市大肠埃希菌的耐药率比较AMP:氨苄西林;A/C:奥格门汀;GEM:庆大霉素;SPT:大观霉素;TET:四环素;FFC:氟苯尼考;SF:磺胺异噁唑;SXT:复方新诺明; CEF:头孢噻呋;CAZ:头孢他啶;ENR:恩诺沙星;OFL:氧氟沙星;MEM:美罗培南;CL:黏菌素。
图3  金华市和台州市16种抗生素对大肠埃希菌的MIC分布AMP:氨苄西林;A/C:奥格门汀;GEM:庆大霉素;SPT:大观霉素;TET:四环素;FFC:氟苯尼考;SF:磺胺异噁唑;SXT:复方新诺明; CEF:头孢噻呋;CAZ:头孢他啶;ENR:恩诺沙星;OFL:氧氟沙星;MEM:美罗培南;APR:安普霉素;CL:黏菌素;MEQ:乙酰甲喹。
图4  金华市和台州市肠球菌的耐药率比较PEN:青霉素;A/C:奥格门汀;ERY:红霉素;ENR:恩诺沙星;SF:磺胺异噁唑;VAN:万古霉素;DOX:多西环素;FFC:氟苯尼考;TIA:泰妙菌素;TIL:替米考星;LZD:利奈唑胺。
图5  金华市和台州市27种抗生素对肠球菌的MIC分布PEN:青霉素;A/C:奥格门汀;ERY:红霉素;CLI:克林霉素;ENR:恩诺沙星;OFL:氧氟沙星;CEF:头孢噻呋;CFX:头孢西丁;SF:磺胺异噁唑;OXA:苯唑西林;VAN:万古霉素;SXT:复方新诺明;DOX:多西环素;FFC:氟苯尼考;TIA:泰妙菌素;TIL:替米考星;GEM:庆大霉素;LZD:利奈唑胺;BAC:杆菌肽;TET:四环素;KIT:吉他霉素;FLA:黄霉素;EDC:恩拉霉素;QCT:喹烯酮;NOS:那西肽;AVI:阿维拉霉素;VGM:弗吉尼亚霉素。
  
序号 Identifier耐药谱 Antimicrobial resistance pattern个数 Number百分比 Percent/%
1AMP-SPT-TET-FFC-SF-SXT2316.0
2AMP-TET-SF-SXT117.6
3106.9
4AMP-GEM-SPT-TET-FFC-SF-SXT85.6
5SPT-TET74.9
6SPT-TET-SF-SXT74.9
7AMP-SPT-TET-SF-SXT64.2
8AMP-TET-FFC-SF64.2
9AMP-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL53.5
10TET-SF-SXT53.5
11AMP-SPT-TET-FFC-SF-SXT-ENR42.8
12AMP-TET-FFC-SF-SXT42.8
13TET-FFC-SF-SXT42.8
14AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-CEF-CAZ-MEM32.1
15AMP-GEM-TET-FFC-SF-SXT32.1
16AMP-TET-FFC-SF-CEF32.1
17TET-FFC-SF32.1
18AMP-A/C-TET-SF-SXT21.4
19AMP-GEM-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL21.4
20AMP-SPT-TET-FFC-SF-SXT-ENR-OFL21.4
21AMP-SPT-TET-FFC-SXT21.4
22TET21.4
23A/C-TET-FFC-SF-SXT-CEF-ENR-OFL10.7
24AMP-A/C-GEM-FFC-SF-SXT-ENR-MEM10.7
25AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL10.7
26AMP-A/C-GEM-TET-FFC-SF-SXT-ENR10.7
27AMP-GEM-FFC-SF-SXT-ENR10.7
28AMP-GEM-SPT-TET-FFC-SF-SXT-CEF10.7
29AMP-GEM-TET-FFC-SF-SXT-ENR10.7
30AMP-GEM-TET-FFC-SF-SXT-ENR-OFL10.7
31AMP-SPT-TET-FFC10.7
32AMP-TET-CEF10.7
33AMP-TET-FFC10.7
34AMP-TET-SF-CEF10.7
35SF10.7
36SPT10.7
37SPT-SF10.7
38SPT-TET-SF10.7
39SPT-TET-SXT10.7
40TET-FFC10.7
41TET-SF10.7
Table 1  Antimicrobial resistance patterns of E. coli isolated from Jinhua City
序号 Identifier耐药谱 Antimicrobial resistance pattern个数 Number百分比 Percent/%
1AMP-SPT-TET-FFC-SF-SXT3323.6
2SF107.1
3AMP-SPT-TET-FFC-SF-SXT-ENR-OFL96.4
4AMP-GEM-SPT-TET-FFC-SF-SXT64.3
5AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL53.6
6AMP-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL53.6
7AMP-TET-FFC-SF-SXT53.6
8TET-SF-SXT53.6
9AMP-GEM-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL42.9
10AMP-GEM-TET-FFC-SF-ENR-OFL42.9
11TET-SF42.9
12AMP-CEF32.1
13AMP-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL32.1
14AMP-SPT-TET-FFC-SF32.1
15AMP-SPT-TET-FFC-SF-SXT-ENR32.1
16AMP-GEM-SPT-TET-FFC-SF-SXT-ENR21.4
17AMP-GEM-SPT-TET-SF-SXT-ENR-OFL21.4
18AMP-GEM-TET-FFC-SF-SXT-CEF-CAZ21.4
19AMP-SPT-TET-FFC-SF-SXT-CEF21.4
20AMP-TET-FFC-SF-SXT-ENR-OFL21.4
21SPT-TET-FFC-SF-SXT21.4
22TET-FFC-SF-SXT21.4
23AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-CAZ-ENR-OFL10.7
24AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL10.7
25AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-ENR10.7
26AMP-A/C-SPT-TET-FFC-SF-SXT10.7
27AMP-GEM-FFC-SF-SXT10.7
28AMP-GEM-FFC-SF-SXT-CEF-CAZ10.7
29AMP-GEM-SPT-FFC-SF-SXT-ENR-OFL10.7
30AMP-GEM-SPT-TET-FFC-SF-SXT-CEF-CAZ-ENR-OFL10.7
31AMP-GEM-TET-FFC-SF-SXT10.7
32AMP-GEM-TET-FFC-SF-SXT-CEF10.7
33AMP-GEM-TET-FFC-SF-SXT-CEF-ENR-OFL10.7
34AMP-GEM-TET-FFC-SF-SXT-ENR-OFL10.7
35AMP-SPT-FFC-SF-CEF10.7
36AMP-SPT-FFC-SF-SXT10.7
37AMP-SPT-FFC-SF-SXT-CEF10.7
38AMP-SPT-TET-FFC-SF-SXT-ENR-MEM10.7
39AMP-SPT-TET-FFC-SXT10.7
40AMP-SPT-TET-SF-SXT10.7
41AMP-TET-FFC-SF10.7
42AMP-TET-FFC-SF-CEF10.7
43AMP-TET-FFC-SF-ENR10.7
44SPT-TET-SF-SXT-ENR-OFL10.7
45TET-FFC-SF10.7
46TET-SF-SXT-ENR10.7
表2  台州市大肠埃希菌的耐药谱

序号

Identifier

耐药谱

Antimicrobial resistance pattern

个数

Number

百分比

Percent/%

1ERY-SF-TIA-TIL4931.0
2SF-TIA-TIL1812.5
3ERY-ENR-SF-TIA-TIL-LZD1711.8
4ERY-SF-TIA-TIL-LZD139.0
5ERY-SF-DOX-TIA-TIL128.3
6

ERY-ENR-SF-DOX-TIA-

TIL-LZD

96.3
7ERY-SF-DOX-TIA-TIL-LZD96.3
8SF-DOX-TIA-TIL53.5
9ERY-ENR-SF-DOX-TIA-TIL42.8
10ERY-ENR-SF-TIA-TIL32.1
11ERY-SF-TIA21.4
12ERY-SF-TIL10.7
13ERY-SF-TIL-LZD10.7
14SF-TIA10.7
表3  金华市肠球菌的耐药谱

序号

Identifier

耐药谱

Antimicrobial resistance pattern

个数

Number

百分比

Percent/%

1

ERY-ENR-SF-DOX-TIA-

TIL-LZD

2719.3
2ERY-SF-DOX-TIA-TIL-LZD2719.3
3ERY-SF-DOX-TIA-TIL2618.6
4ERY-SF-TIA-TIL1611.4
5ERY-ENR-SF-TIA-TIL-LZD117.9
6ERY-SF-TIA-TIL-LZD96.4
7ERY-ENR-SF-DOX-TIA-TIL64.3
8ERY-ENR-SF-TIA-TIL32.1
9SF-TIA-TIL32.1
10ENR-SF-TIA-TIL21.4
11ERY-SF-TIA21.4
12SF21.4
13SF-TIA21.4
14ENR-SF-DOX-TIA-TIL10.7
15

PEN-ERY-ENR-SF-DOX-

TIA-TIL

10.7
16SF-DOX-TIA10.7
17SF-DOX-TIA-LZD10.7
表4  台州市肠球菌的耐药谱
  表1 金华市大肠埃希菌的耐药谱
  
1 CROXEN M A, FINLAY B B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 2010,8(1):26-38. DOI:10.1038/nrmicro2265
doi: 10.1038/nrmicro2265
2 GAO W, HOWDEN B P, STINEAR T P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Current Opinion in Microbiology, 2018,41:76-82. DOI:10.1016/j.mib.2017.11.030
doi: 10.1016/j.mib.2017.11.030
3 FIORE E, TYNE D VAN, GILMORE M S. Pathogenicity of Enterococci. Microbiology Spectrum, 2019,7(4):10. DOI:10.1128/microbiolspec.GPP3-0053-2018
doi: 10
4 KISSINGA H D, MWOMBEKI F, SAID K, et al. Antibiotic susceptibilities of indicator bacteria Escherichia coli and Enterococci spp. isolated from ducks in Morogoro Municipality, Tanzania. BMC Research Notes, 2018,11(1):87. DOI:10.1186/s13104-018-3201-4
doi: 10.1186/s13104-018-3201-4
5 ALM E W, ZIMBLER D, CALLAHAN E, et al. Patterns and persistence of antibiotic resistance in faecal indicator bacteria from freshwater recreational beaches. Journal of Applied Microbiology, 2014,117(1):273-285. DOI:10.1111/jam.12512
doi: 10.1111/jam.12512
6 MA Z, LEE S, JEONG K C. Mitigating antibiotic resistance at the livestock-environment interface: a review. Journal of Microbiology and Biotechnology, 2019,29(11):1683-1692. DOI:10.4014/jmb.1909.09030
doi: 10.4014/jmb.1909.09030
7 QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment. Environment International, 2018,110:160-172. DOI:10.1016/j.envint.2017.10.016
doi: 10.1016/j.envint.2017.10.016
8 OSMAN K M, KAPPELL A D, ELHADIDY M, et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: a risk to public health and food safety. Scientific Reports, 2018,8(1):5859. DOI:10.1038/s41598-018-23962-7
doi: 10.1038/s41598-018-23962-7
9 HAMMERUM A M, LESTER C H, HEUER O E. Antimicrobial-resistant enterococci in animals and meat: a human health hazard?Foodborne Pathogens and Disease, 2010,7(10):1137-1146. DOI:10.1089/fpd.2010.0552
doi: 10.1089/fpd.2010.0552
10 BELLANGER X, PAYOT S, LEBLOND-BOURGET N, et al. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiology Reviews, 2014,38(4):720-760. DOI:10.1111/1574-6976.12058
doi: 10.1111/1574-6976.12058
11 HEUER O E, HAMMERUM A M, COLLIGNON P, et al. Human health hazard from antimicrobial-resistant enterococci in animals and food. Clinical Infectious Diseases, 2006,43(7):911-916. DOI:10.1086/507534
doi: 10.1086/507534
12 张纯萍,宋立,吴辰斌,等.我国动物源细菌耐药性监测系统简介.中国动物检疫,2017,34(3):34-38. DOI:10.3969/j.issn.1005-944X.2017.03.009
ZHANG C P, SONG L, WU C B, et al. Drug resistance surveillance network for zoonotic bacteria in China. China Animal Health Inspection, 2017,34(3):34-38. (in Chinese)
doi: 10.3969/j.issn.1005-944X.2017.03.009
13 KOSTRZEWA M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Review of Proteomics, 2018,15(3):193-202. DOI:10.1080/14789450.2018.1438193
doi: 10.1080/14789450.2018.1438193
14 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: M100-S27. Wayne, PA, U.S.: CLSI, 2017. DOI:10.1128/jcm.00213-21
doi: 10.1128/jcm.00213-21
15 卢亚兰,代正云,陈凌云,等.两株blaNDM-5基因介导的碳青霉烯耐药禽源大肠埃希菌ST10和ST354耐药性.微生物学通报,2020,47(6):1837-1846. DOI:10.13344/j.microbiol.china.190856
LU Y L, DAI Z Y, CHEN L Y, et al. Two carbapenem-resistant avian Escherichia coli strains ST10 and ST354 mediated by blaNDM-5 gene. Microbiology China, 2020,47(6):1837-1846. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.190856
16 中国临床微生物质谱共识专家组.中国临床微生物质谱应用专家共识.中华医院感染学杂志,2016,26(10):2149-2152. DOI:10.1039/c5cc09775d
China Clinical Microbiology Mass Sspectrometry Consensus Expert Group. China expert consensus on clinical microor-ganism mass spectrometry application. Chinese Journal of Nosocomiology, 2016,26(10):2149-2152. (in Chinese)
doi: 10.1039/c5cc09775d
17 2018年中国兽用抗菌药使用情况报告.中国动物保健,2019,21(12):8-9[2021-8-16]. . DOI:10.1007/978-981-10-7983-2_3
Report on the use of veterinary antibiotics in China in2018. China Animal Health, 2019,21(12):8-9. (in Chinese)
doi: 10.1007/978-981-10-7983-2_3
18 ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015,49(11):6772-6782. DOI:10.1021/acs.est.5b00729
doi: 10.1021/acs.est.5b00729
19 ASLAN A T, AKOVA M. Extended spectrum β-lactamase producing enterobacteriaceae: carbapenem sparing options. Expert Review of Anti-infective Therapy, 2019,17(12):969-981. DOI:10.1080/14787210.2019.1693258
doi: 10.1080/14787210.2019.1693258
20 LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 2016,16(2):161-168. DOI:10.1016/S1473-3099(15)00424-7
doi: 10.1016/S1473-3099(15)00424-7
21 WANG Y, XU C Y, ZHANG R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. The Lancet Infectious Diseases, 2020,20(10):1161-1171. DOI:10.1016/S1473-3099(20)30149-3
doi: 10.1016/S1473-3099(20)30149-3
22 FANG J H, SHEN Y, QU D F, et al. Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control, 2019,95:215-222. DOI:10.1016/j.foodcont.2018.08.003
doi: 10.1016/j.foodcont.2018.08.003
[1] 吴荣康,潘芳慧,常佳悦,张星,TIBAMBA Matthew,王友保. 河南省畜禽粪便的耕地污染及其未来风险预测[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 233-242.
[2] 贡嘎,王一飞,格桑卓玛,索朗斯珠,尼玛央宗,拉巴次仁. 1株藏猪源荚膜血清D型多杀性巴氏杆菌的分离鉴定及其生物学特性[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 611-617.
[3] 赵燕,金俊杰,任敏敏,侯凤香,刘素贞,薛成俊,肖英平. 2种养殖模式下蛋鸭大肠埃希菌毒力基因和耐药特征分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 254-262.
[4] 梁思源, 王越珉, 胡松华. 头孢噻呋纳米乳的制备及其抗奶牛乳腺炎主要致病菌的研究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 247-252.
[5] 潘航, 李肖梁, 方维焕, 乐敏. 美国近20 年主要食源性致病菌的分布及耐药性分析——对我国细菌耐药性监控工作的启示[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 237-246.
[6] 向玉勇,张云,殷培峰,朱萍. 大肠埃希菌感染后金银花尺蠖幼虫血细胞的变化[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 163-168.
[7] 谢国雄,吴崇书,孔樟良,姜铭北 . 规模化养殖场畜禽粪中磷的化学形态与稳定化[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 213-218.
[8] 杨黎, 汪海珍, 姚志远, 吴建军. 大肠埃希菌O157:H7植物组织内生化研究概况[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 82-88.
[9] 陈健舜*, 朱凝瑜, 丁雪燕, 姚高华, 陈晓明, 孔蕾, 郑天伦, 何中央. 浙江省主要养殖区凡纳滨对虾(Litopenaeus vannamei)红体病病原研究[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 688-696.
[10] 徐秋桐1, 常跃畅1, 章明奎1,2*. 浙江省土壤中细菌对抗生素耐药性的生态分布特征[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 537-544.
[11] 汪开英  张赟  朱晓莲. 畜禽废弃物的基质化处理研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(5): 598-602.
[12] 姜中其  陈晓红  方维焕  张应勤  孙建华. 规模化猪场仔猪断奶腹泻大肠杆菌耐药性监测[J]. 浙江大学学报(农业与生命科学版), 2004, 30(5): 567-571.