动物科学与动物医学 |
|
|
|
|
浙江省2市动物源大肠埃希菌及肠球菌耐药性比较和分析 |
唐标1,2(),郝运1,2,林家辉3,王静鸽2,4,吉小凤1,2,钱鸣蓉1,2,杨华1,2() |
1.浙江省农业科学院农产品质量安全危害因子与风险防控国家重点实验室,杭州 310021 2.浙江省农业科学院农产品质量安全与营养研究所,杭州 310021 3.浙江理工大学生命科学与医药学院,杭州 310018 4.青海大学农牧学院,西宁 810016 |
|
Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province |
Biao TANG1,2(),Yun HAO1,2,Jiahui LIN3,Jingge WANG2,4,Xiaofeng JI1,2,Mingrong QIAN1,2,Hua YANG1,2() |
1.State Key Laboratory of Quality Safety and Risk Factor Prevention and Control of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China 2.Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China 3.College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China 4.College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China |
引用本文:
唐标,郝运,林家辉,王静鸽,吉小凤,钱鸣蓉,杨华. 浙江省2市动物源大肠埃希菌及肠球菌耐药性比较和分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 647-659.
Biao TANG,Yun HAO,Jiahui LIN,Jingge WANG,Xiaofeng JI,Mingrong QIAN,Hua YANG. Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 647-659.
链接本文:
http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.11.121
或
http://www.zjujournals.com/agr/CN/Y2021/V47/I5/647
|
1 |
CROXEN M A, FINLAY B B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 2010,8(1):26-38. DOI:10.1038/nrmicro2265
doi: 10.1038/nrmicro2265
|
2 |
GAO W, HOWDEN B P, STINEAR T P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Current Opinion in Microbiology, 2018,41:76-82. DOI:10.1016/j.mib.2017.11.030
doi: 10.1016/j.mib.2017.11.030
|
3 |
FIORE E, TYNE D VAN, GILMORE M S. Pathogenicity of Enterococci. Microbiology Spectrum, 2019,7(4):10. DOI:10.1128/microbiolspec.GPP3-0053-2018
doi: 10
|
4 |
KISSINGA H D, MWOMBEKI F, SAID K, et al. Antibiotic susceptibilities of indicator bacteria Escherichia coli and Enterococci spp. isolated from ducks in Morogoro Municipality, Tanzania. BMC Research Notes, 2018,11(1):87. DOI:10.1186/s13104-018-3201-4
doi: 10.1186/s13104-018-3201-4
|
5 |
ALM E W, ZIMBLER D, CALLAHAN E, et al. Patterns and persistence of antibiotic resistance in faecal indicator bacteria from freshwater recreational beaches. Journal of Applied Microbiology, 2014,117(1):273-285. DOI:10.1111/jam.12512
doi: 10.1111/jam.12512
|
6 |
MA Z, LEE S, JEONG K C. Mitigating antibiotic resistance at the livestock-environment interface: a review. Journal of Microbiology and Biotechnology, 2019,29(11):1683-1692. DOI:10.4014/jmb.1909.09030
doi: 10.4014/jmb.1909.09030
|
7 |
QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment. Environment International, 2018,110:160-172. DOI:10.1016/j.envint.2017.10.016
doi: 10.1016/j.envint.2017.10.016
|
8 |
OSMAN K M, KAPPELL A D, ELHADIDY M, et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: a risk to public health and food safety. Scientific Reports, 2018,8(1):5859. DOI:10.1038/s41598-018-23962-7
doi: 10.1038/s41598-018-23962-7
|
9 |
HAMMERUM A M, LESTER C H, HEUER O E. Antimicrobial-resistant enterococci in animals and meat: a human health hazard?Foodborne Pathogens and Disease, 2010,7(10):1137-1146. DOI:10.1089/fpd.2010.0552
doi: 10.1089/fpd.2010.0552
|
10 |
BELLANGER X, PAYOT S, LEBLOND-BOURGET N, et al. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiology Reviews, 2014,38(4):720-760. DOI:10.1111/1574-6976.12058
doi: 10.1111/1574-6976.12058
|
11 |
HEUER O E, HAMMERUM A M, COLLIGNON P, et al. Human health hazard from antimicrobial-resistant enterococci in animals and food. Clinical Infectious Diseases, 2006,43(7):911-916. DOI:10.1086/507534
doi: 10.1086/507534
|
12 |
张纯萍,宋立,吴辰斌,等.我国动物源细菌耐药性监测系统简介.中国动物检疫,2017,34(3):34-38. DOI:10.3969/j.issn.1005-944X.2017.03.009 ZHANG C P, SONG L, WU C B, et al. Drug resistance surveillance network for zoonotic bacteria in China. China Animal Health Inspection, 2017,34(3):34-38. (in Chinese)
doi: 10.3969/j.issn.1005-944X.2017.03.009
|
13 |
KOSTRZEWA M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Review of Proteomics, 2018,15(3):193-202. DOI:10.1080/14789450.2018.1438193
doi: 10.1080/14789450.2018.1438193
|
14 |
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: M100-S27. Wayne, PA, U.S.: CLSI, 2017. DOI:10.1128/jcm.00213-21
doi: 10.1128/jcm.00213-21
|
15 |
卢亚兰,代正云,陈凌云,等.两株blaNDM-5基因介导的碳青霉烯耐药禽源大肠埃希菌ST10和ST354耐药性.微生物学通报,2020,47(6):1837-1846. DOI:10.13344/j.microbiol.china.190856 LU Y L, DAI Z Y, CHEN L Y, et al. Two carbapenem-resistant avian Escherichia coli strains ST10 and ST354 mediated by blaNDM-5 gene. Microbiology China, 2020,47(6):1837-1846. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.190856
|
16 |
中国临床微生物质谱共识专家组.中国临床微生物质谱应用专家共识.中华医院感染学杂志,2016,26(10):2149-2152. DOI:10.1039/c5cc09775d China Clinical Microbiology Mass Sspectrometry Consensus Expert Group. China expert consensus on clinical microor-ganism mass spectrometry application. Chinese Journal of Nosocomiology, 2016,26(10):2149-2152. (in Chinese)
doi: 10.1039/c5cc09775d
|
17 |
2018年中国兽用抗菌药使用情况报告.中国动物保健,2019,21(12):8-9[2021-8-16]. . DOI:10.1007/978-981-10-7983-2_3 Report on the use of veterinary antibiotics in China in2018. China Animal Health, 2019,21(12):8-9. (in Chinese)
doi: 10.1007/978-981-10-7983-2_3
|
18 |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015,49(11):6772-6782. DOI:10.1021/acs.est.5b00729
doi: 10.1021/acs.est.5b00729
|
19 |
ASLAN A T, AKOVA M. Extended spectrum β-lactamase producing enterobacteriaceae: carbapenem sparing options. Expert Review of Anti-infective Therapy, 2019,17(12):969-981. DOI:10.1080/14787210.2019.1693258
doi: 10.1080/14787210.2019.1693258
|
20 |
LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 2016,16(2):161-168. DOI:10.1016/S1473-3099(15)00424-7
doi: 10.1016/S1473-3099(15)00424-7
|
21 |
WANG Y, XU C Y, ZHANG R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. The Lancet Infectious Diseases, 2020,20(10):1161-1171. DOI:10.1016/S1473-3099(20)30149-3
doi: 10.1016/S1473-3099(20)30149-3
|
22 |
FANG J H, SHEN Y, QU D F, et al. Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control, 2019,95:215-222. DOI:10.1016/j.foodcont.2018.08.003
doi: 10.1016/j.foodcont.2018.08.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|