Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 773-783    DOI: 10.3785/j.issn.1008-973X.2023.04.015
交通工程、土木工程     
全附体潜艇旋臂水池试验及单平面受力研究
赵博文1(),贠莹莹1,孙济源1,杨志国1,*(),黄滨1,2
1. 浙江大学 海洋学院,浙江 舟山 316021
2. 浙江大学 海洋感知技术与装备教育部工程研究中心,浙江 舟山 316021
Study on rotating arm test of fully appended submarine and forces in single-plane
Bo-wen ZHAO1(),Ying-ying YUN1,Ji-yuan SUN1,Zhi-guo YANG1,*(),Bin HUANG1,2
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. The Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhejiang University, Zhoushan 316021, China
 全文: PDF(5042 KB)   HTML
摘要:

为了研究水下航行器在定常回转中的水动力特性及受力运动规律,以潜艇标模SUBOFF AFF-8为研究对象,在浙江大学旋臂水池中进行潜艇操纵性回转试验. 介绍潜艇旋臂水池试验的测试技术,包括模型安装、数据测量及六分力天平的标定与校核. 获取水平面和垂直面的旋转导数,与泰勒水池的实验值形成对比. 结果表明,浙江大学水池与泰勒水池相比,误差小于10%,证明浙江大学旋臂水池对潜艇操纵性试验的测量具有一定的可靠性. 在水平面运动中,纵向力和横向力随漂角的变化曲线以0°漂角为分界点左右对称,横摇力矩和偏航力矩随漂角的增大而增大,垂向力和俯仰力矩随漂角的变化近似呈抛物线分布. 垂直面运动时,上浮和下潜运动的力和力矩呈对称分布. 角速度越大,纵向力越大,在较高的角速度下,不同攻角下的力差值较大.

关键词: 旋臂试验操纵性全附体潜艇单平面受力    
Abstract:

A submarine manoeuvring turning test was conducted in a rotating arm basin at Zhejiang University by using the standard model SUBOFF AFF-8 as a test object in order to analyze the hydrodynamic characteristics and force motion of underwater vehicles in steady turn. The test technology of rotating arm test was introduced, including model installation, data measurement and calibration and verification of six component balance. The rotation derivatives of the horizontal and vertical planes were obtained and compared with the experimental values of the Taylor tank. Results showed that the error between Zhejiang University basin and Taylor tank was less than 10%, which proved the reliability of measurements for submarine maneuverability with Zhejiang University’s basin. The change curves of longitudinal force and transverse force with drift angle were symmetrical to the left and right with 0° drift angle as the dividing point when moving on the horizontal plane. The roll moment and yaw moment increased with the increase of drift angle. The vertical force and pitch moment were similar to parabola distribution with the change of drift angle. The forces and moments of the upward and downward movements were symmetrically distributed when moving on the vertical plane. The larger the angular velocity was, the larger the longitudinal force was. The force difference at different angles of attack was larger at higher angular velocities.

Key words: rotating arm test    maneuverability    fully appended submarine    force in single-plane
收稿日期: 2022-11-16 出版日期: 2023-04-21
CLC:  U 661  
基金资助: 国家自然科学基金资助项目(52076186,51839010); 舟山市科技局资助项目(2022C81005)
通讯作者: 杨志国     E-mail: zju_zhbw@zju.edu.cn;binhuang@zju.edu.cn
作者简介: 赵博文(1998—),男,硕士生,从事潜艇水动力学的研究. orcid.org/0000-0002-4905-8188. E-mail: zju_zhbw@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵博文
贠莹莹
孙济源
杨志国
黄滨

引用本文:

赵博文,贠莹莹,孙济源,杨志国,黄滨. 全附体潜艇旋臂水池试验及单平面受力研究[J]. 浙江大学学报(工学版), 2023, 57(4): 773-783.

Bo-wen ZHAO,Ying-ying YUN,Ji-yuan SUN,Zhi-guo YANG,Bin HUANG. Study on rotating arm test of fully appended submarine and forces in single-plane. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 773-783.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/773

图 1  浙江大学的旋臂水池
主尺度 数值
LOA/m 4.356
LPP/m 4.261
Dmax/m 0.508
V/m3 0.718
Swa/m2 6.338
xBLOA?1)/% 46.21
表 1  SUBOFF AFF-8的主尺度
图 2  SUBOFF AFF-8的实物模型
图 3  不锈钢支杆模型
图 4  钢质底座和压载箱的尺寸
图 5  支杆与模型和天平的安装方式
图 6  水平面倒装的安装形式
图 7  垂直面侧装的安装形式
图 8  六分力天平的标定仪器
图 9  用于标定系数矩阵的6种加载工况
图 10  系数矩阵的校核结果
图 11  半径为16 m时水平面的力和力矩
图 12  水平面量纲一的侧向力和偏航力矩
水池 $ {Y}_{{\rm{r}}}^{\mathrm{{'}}} $ $ {N}_{{\rm{r}}}^{\mathrm{{'}}} $
浙大水池 0.004 99 ?0.004 08
泰勒水池 0.005 25 ?0.004 44
误差/% 4.97 8.11
表 2  水平面的旋转导数
图 13  垂直面上浮的量纲一垂向力和俯仰力矩
图 14  垂直面下潜的量纲一垂向力和俯仰力矩
垂直面 $ {Z}_{{\rm{q}}}^{\mathrm{{'}}} $ $ {M}_{{\rm{q}}}^{\mathrm{{'}}} $
浙大水池 泰勒水池 浙大水池 泰勒水池
上浮 ?0.007 96 ?0.007 55 ?0.003 97 ?0.003 7
下潜 ?0.080 80 ?0.007 55 ?0.003 92 ?0.003 7
表 3  垂直面的旋转导数
图 15  水平面0°漂角的条件下的重复试验的侧向力系数
ωr' SDev/10?3 P(M)/10?3
?0.272 0.021 0.015 8
?0.311 0.154 0.116 0
?0.363 0.113 0.085 7
?0.436 0.169 0.128 0
表 4  侧向力系数的标准偏差和精密度极限
图 16  水平面不同角速度下的力、力矩随漂角的变化曲线
图 17  垂直面上浮运动不同角速度下的力、力矩随攻角的变化曲线
图 18  垂直面下潜运动不同角速度下的力、力矩随攻角的变化曲线
1 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995.
2 詹成胜, 刘祖源, 程细得 潜艇水动力系数数值计算[J]. 船海工程, 2008, 37 (5): 1- 44
ZHAN Cheng-sheng, LIU Zu-yuan, CHENG Xi-de Numerical calculation of the submarine’s hydrodynamic coefficients[J]. Ship and Ocean Engineering, 2008, 37 (5): 1- 44
doi: 10.3963/j.issn.1671-7953.2008.03.001
3 邓峰, 戴余良, 陈志法, 等 基于滑移网格的潜艇旋臂试验数值模拟[J]. 指挥控制与仿真, 2016, 38 (1): 122- 126
DENG Feng, DAI Yu-liang, CHEN Zhi-fa, et al Sliding mesh based on numerical simulation of rotating arms tests for submarines[J]. Command Control and Simulation, 2016, 38 (1): 122- 126
4 庞永杰, 杨路春, 李宏伟, 等 潜体水动力导数的CFD计算方法研究[J]. 哈尔滨工程大学学报, 2009, 30 (8): 903- 908
PANG Yong-jie, YANG Lu-chun, LI Hong-wei, et al Approaches for predicting hydrodynamic characteristic of submarine objects[J]. Journal of Harbin Engineering University, 2009, 30 (8): 903- 908
5 柏铁朝, 许建, 陈炫树, 等 基于CFD的潜艇操纵性数值仿真发展综述[J]. 舰船科学技术, 2020, 42 (9): 1- 7
BAI Tie-chao, XU Jian, CHEN Xuan-shu, et al Review of development in numerical simulation of submarine maneuverability based on CFD[J]. Ship Science and Technology, 2020, 42 (9): 1- 7
doi: 10.3404/j.issn.1672-7649.2020.05.001
6 周广礼, 欧勇鹏, 高霄鹏, 等 潜艇操纵性预报研究现状与前景展望[J]. 中国造船, 2018, 59 (3): 203- 214
ZHOU Guang-li, OU Yong-peng, GAO Xiao-peng, et al Progress and prospect of maneuverability prediction for submarine[J]. Shipbuilding of China, 2018, 59 (3): 203- 214
7 张风丽 潜艇操纵性水动力系数预报方法研究[J]. 中国水运(下半月), 2018, 18 (1): 13- 15
ZHANG Feng-li Research on prediction method of submarine maneuverability hydrodynamic coefficient[J]. China Water Transport, 2018, 18 (1): 13- 15
8 SAEIDINEZHAD A, DEHGHAN A A, MANSHADI M D Experimental investigation of hydrodynamic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver[J]. Ocean Engineering, 2015, 100: 26- 34
doi: 10.1016/j.oceaneng.2015.03.010
9 FUREBY C, ANDERSON B, CLARKE D, et al Experimental and numerical study of a generic conventional submarine at 10 yaw[J]. Ocean Engineering, 2016, 116: 1- 20
doi: 10.1016/j.oceaneng.2016.01.001
10 YI R, HU Z, LIN Y, et al. Maneuverability design and analysis of an autonomous underwater vehicle for deep-sea hydrothermal plume survey [C]// 2013 OCEANS-San Diego. [S. l. ]: IEEE, 2013: 1-5.
11 ASHOK A, VAN B T, SMITS A J The structure of the wake generated by a submarine model in yaw[J]. Experiments in Fluids, 2015, 56 (6): 1- 9
12 MANSOORZADEH S, JAVANMARD E An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods[J]. Journal of Fluids and Structures, 2014, 51: 161- 171
doi: 10.1016/j.jfluidstructs.2014.09.001
13 LIN Y H, TSENG S H, CHEN Y H The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the planar motion mechanism tests[J]. Ocean Engineering, 2018, 170: 120- 135
doi: 10.1016/j.oceaneng.2018.10.015
14 LIN Y H, CHIU Y C The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment[J]. Ocean Engineering, 2022, 249: 110847
doi: 10.1016/j.oceaneng.2022.110847
15 赵金鑫. 某潜器水动力性能计算及运动仿真[D]. 哈尔滨: 哈尔滨工程大学, 2011.
ZHAO Jin-xin. The hydrodynamic performance calculation and motion simulation of an AUV with appendages [D]. Harbin: Harbin Engineering University, 2011.
16 李刚. 穿梭潜器水动力特性的数值模拟和试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
LI Gang. Numerical and experimental research on hydrodynamic characters of shuttle submersible [D]. Harbin: Harbin Engineering University, 2011.
17 庞永杰, 王庆云, 李伟坡 螺旋桨及其运行对潜艇操纵性水动力影响的模型试验研究[J]. 哈尔滨工程大学学报, 2017, 38 (1): 109- 114
PANG Yong-jie, WANG Qing-yun, LI Wei-po Model test study of influence of propeller and its rotation on hydrodynamics of submarine maneuverability[J]. Journal of Harbin Engineering University, 2017, 38 (1): 109- 114
18 ATSAVAPRABEE T C, HESS D E. PIV measurements of the cross-flow wave of a turning submarine model (ONR BODY-1) part 1: experimental setup [R]. Bethesda Maryland: Naval Surface Warfare Center, 2002.
19 ETEBARI A, ATSAVAPRANEE P, CARNEAL J B, et al. Experimental measurements on a SUBOFF model in a turning maneuver [C]// 27th Symposium on Naval Hydrodynamics. Seoul: [s. n.], 2008.
20 GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA suboff models: (DTRC Model Nos. 5470 and 5471) [R]. Bethesda Maryland: David Taylor Research Center, 1989.
21 RODDY R F. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments [R]. Bethesda Maryland: David Taylor Research Centre, 1990.
22 PRESS W H, TEUKOLSKY S A Savitzky-Golay smoothing filters[J]. Computers in Physics, 1990, 4 (6): 669- 672
doi: 10.1063/1.4822961
23 LIU H L, HUANG T T. Summary of DARPA SUBOFF experimental program data [R]. Bethesda MD: Naval Surface Warfare Center Carderock DIV Bethesda MD Hydromechanics Directorate, 1998.
24 朱德祥, 张志荣, 吴乘胜, 等 船舶CFD不确定度分析及ITTC临时规程的初步应用[J]. 水动力学研究与进展A辑, 2007, 22 (3): 363- 370
ZHU De-xiang, ZHANG Zhi-rong, WU Cheng-sheng, et al Uncertainty analysis in ship CFD and the primary application of ITTC procedures[J]. Chinese Journal of Hydrodynamics, 2007, 22 (3): 363- 370
25 周广利, 黄德波, 李凤来 船模拖曳阻力试验的不确定度分析[J]. 哈尔滨工程大学学报, 2006, 27 (3): 377- 381
ZHOU Guang-li, HUANG De-bo, LI Feng-lai Uncertainty analysis of ship model towing resistance test[J]. Journal of Harbin Engineering University, 2006, 27 (3): 377- 381
doi: 10.3969/j.issn.1006-7043.2006.03.013
26 马向能, 孙张群, 冯骏 测量不确定度分析在操纵性试验中的应用[J]. 船舶力学, 2004, 8 (5): 52- 61
MA Xiang-neng, SUN Zhang-qun, FENG Jun Uncertainty analysis in captive model test[J]. Journal of Ship Mechanics, 2004, 8 (5): 52- 61
doi: 10.3969/j.issn.1007-7294.2004.05.007
27 史圣哲, 郑亚雄 潜艇标模阻力试验的不确定度分析[J]. 实验流体力学, 2015, 29 (5): 65- 71
SHI Sheng-zhe, ZHENG Ya-xiong Uncertainty analysis in submarine standard model resistance test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29 (5): 65- 71
[1] 王雄东,彭章明,潘华辰,田晓庆,朱泽飞,冷建兴. 双桨无人船转弯半径预报[J]. 浙江大学学报(工学版), 2021, 55(10): 1930-1936.
[2] 黄松兴,焦甲龙,陈超核. 方形波浪中船舶运动特性及安全航行策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1473-1481.
[3] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[4] 张翰钦, 孙国仓, 郑国垠, 陈明. 水下开孔结构流激振荡频率特性分析[J]. 浙江大学学报(工学版), 2017, 51(2): 350-357.
[5] 卢雨,胡安康,刘亚冲. 基于有限点法的自由面流动的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 55-62.