Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (7): 907-915    DOI: 10.1631/jzus.A0720035
Applied Mechanics     
Using FEM to predict tree motion in a wind field
Xiao-yi HU, Wei-ming TAO, Yi-mu GUO
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; School of Engineering, Zhejiang Forestry University, Hangzhou 311300, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper we propose a finite element (FE) simulation method to predict tree motion in a wind field. Two FE tree models were investigated: One model was generated based on a realistic nature-looking geometric tree model, and the other was a symmetric model to investigate the influence of asymmetric material properties on tree motion. The vortex-induced vibration (VIV) theory is introduced to estimate the fluctuating wind force being exerted on tree stems and the fluid-structure interaction (FSI) analysis is also included in the simulation. The results indicate that asymmetric material properties result in the crosswind displacement of the investigated node and the main swaying direction deviation. The simulation reveals that under wind loading, a tree with leaves has much larger swaying amplitude along the wind direction and longer swaying period than a tree without leaves. However, the crosswind swaying amplitude is mainly due to branch interaction. The numerical simulation proved that the interaction of tree branches can prevent dangerous swaying motion developing.

Key wordsFinite element method (FEM)      Fluid-structure interaction (FSI)      Vortex-induced vibration (VIV)      Asymmetric      Wind field     
Received: 21 October 2007     
CLC:  O39  
  O368  
  S7  
Cite this article:

Xiao-yi HU, Wei-ming TAO, Yi-mu GUO. Using FEM to predict tree motion in a wind field. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 907-915.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0720035     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I7/907

[1] Xiao-ping Ouyang, Xu Fang, Hua-yong Yang. An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(3): 202-214.
[2] Xiao-zhong Wang, Xia Wang, Ying-qi Chen, Li-yan Dai, Xing-cong Li. Asymmetric synthesis of N-protected 3-methylpiperidin-2-one and its diastereoisomer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 163-170.
[3] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[4] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[5] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[6] Zhen-peng He, Jun-hong Zhang, Wei-song Xie, Zhou-yu Li, Gui-chang Zhang. Misalignment analysis of journal bearing influenced by asymmetric deflection, based on a simple stepped shaft model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 647-664.
[7] Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.
[8] Qiang Li, Shu-lian Liu, Xiao-hong Pan, Shui-ying Zheng. A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 293-310.
[9] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.
[10] Heng Yuan, Kyu-jin Kim, Won-seok Kang, Byoung-ho Kang, Se-hyuk Yeom, Jae-ho Kim, Shin-won Kang. High-efficiency technique based on dielectrophoresis for assembling metal, semiconductor, and polymer nanorods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(5): 368-373.
[11] Cheng Huang, Yan Bao, Dai Zhou, Jin-quan Xu. Large eddy simulation for wind field analysis based on stabilized finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(4): 278-290.
[12] Zhao-dong Xu, Deng-xiang Wang, Ke-yi Wu. Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 238-246.
[13] Su-qing Huang, Ju Chen, Wei-liang Jin. Numerical investigation and design of thin-walled complex section steel columns[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 131-138.
[14] Cheng Huang, Dai Zhou, Yan Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 33-45.
[15] Wei Li, Yi Yang, De-ren Sheng, Jian-hong Chen, Yong-qiang Che. Nonlinear dynamic analysis of a rotor/bearing/seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 46-55.