Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (7): 1038-1043    DOI: 10.1631/jzus.2007.A1038
Mechanics & Civil Engineering     
3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials
CHEN Jiang-ying, CHEN Wei-qiu
Faculty of Engineering, Ningbo University, Ningbo 315211, China; Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media. The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.

Key wordsFunctionally graded materials      Transversely isotropic      Rotating annular plate      Analytical solution     
Received: 14 February 2007     
CLC:  O31  
Cite this article:

CHEN Jiang-ying, CHEN Wei-qiu. 3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(7): 1038-1043.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A1038     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I7/1038

[1] Xiang-dong Hu, Wang Guo, Luo-yu Zhang, Jin-tai Wang, Xue Dong. Mathematical models of steady-state temperature fields produced by multi-piped freezing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 702-723.
[2] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[3] Ke-fei Li, Wei-ning Liu, Valeri Markine, Zhi-wei Han. Analytical study on the dynamic displacement response of a curved track subjected to moving loads[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 867-879.
[4] Zhen-dong Shan, Dao-sheng Ling, Hao-jiang Ding. Analytical solution for 1D consolidation of unsaturated soil with mixed boundary condition[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 61-70.
[5] Mohammad Mohsen Shahmardan, Mahmood Norouzi, Mohammad Hassan Kayhani, Amin Amiri Delouei. An exact analytical solution for convective heat transfer in rectangular ducts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(10): 768-781.
[6] Chang-guang ZHANG, Qing-he ZHANG, Jun-hai ZHAO, Fei XU, Chuang-zhou WU. Unified analytical solutions for a circular opening based on non-linear unified failure criterion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(2): 71-79.
[7] Ji YING, Hui-ming WANG. Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 319-326.
[8] Ji YING, Chao-feng LÜ, C. W. LIM. 3D thermoelasticity solutions for functionally graded thick plates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 327-336.
[9] HUANG De-jin, DING Hao-jiang, CHEN Wei-qiu. Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(9): 1351-1355.
[10] LI Xiang-yu, DING Hao-jiang, CHEN Wei-qiu. Pure bending of simply supported circular plate of transversely isotropic functionally graded material[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(8 ): 5-.
[11] CAO Pin-lu, LIU Bao-chang, YIN Kun, ZHANG Zu-pei. Optimization design and residual thermal stress analysis of PDC functionally graded materials[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(8): 1318-1323.
[12] XIE Kang-he, QI Tian, DONG Ya-qin. Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(8 ): 10-.
[13] XIE Kang-he, WEN Jie-bang, XIA Jian-zhong. Solution to 1-D consolidation of non-homogeneous soft clay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(Supplement 1): 29-34.
[14] DING Hao-jiang, HUANG De-jin, WANG Hui-ming. Analytical solution for fixed-end beam subjected to uniform load[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(8): 779-783.
[15] JIANG Ai-min, DING Hao-jiang. The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(2): 126-131.