Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (11): 885-896    DOI: 10.1631/jzus.C1100006
    
Novel linear search for support vector machine parameter selection
Hong-xia Pang, Wen-de Dong, Zhi-hai Xu, Hua-jun Feng*, Qi Li, Yue-ting Chen
State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Download:   PDF(959KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Selecting the optimal parameters for support vector machine (SVM) has long been a hot research topic. Aiming for support vector classification/regression (SVC/SVR) with the radial basis function (RBF) kernel, we summarize the rough line rule of the penalty parameter and kernel width, and propose a novel linear search method to obtain these two optimal parameters. We use a direct-setting method with thresholds to set the epsilon parameter of SVR. The proposed method directly locates the right search field, which greatly saves computing time and achieves a stable, high accuracy. The method is more competitive for both SVC and SVR. It is easy to use and feasible for a new data set without any adjustments, since it requires no parameters to set.

Key wordsSupport vector machine (SVM)      Rough line rule      Parameter selection      Linear search      Motion prediction     
Received: 05 January 2011      Published: 04 November 2011
CLC:  TP181  
Cite this article:

Hong-xia Pang, Wen-de Dong, Zhi-hai Xu, Hua-jun Feng, Qi Li, Yue-ting Chen. Novel linear search for support vector machine parameter selection. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 885-896.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1100006     OR     http://www.zjujournals.com/xueshu/fitee/Y2011/V12/I11/885


Novel linear search for support vector machine parameter selection

Selecting the optimal parameters for support vector machine (SVM) has long been a hot research topic. Aiming for support vector classification/regression (SVC/SVR) with the radial basis function (RBF) kernel, we summarize the rough line rule of the penalty parameter and kernel width, and propose a novel linear search method to obtain these two optimal parameters. We use a direct-setting method with thresholds to set the epsilon parameter of SVR. The proposed method directly locates the right search field, which greatly saves computing time and achieves a stable, high accuracy. The method is more competitive for both SVC and SVR. It is easy to use and feasible for a new data set without any adjustments, since it requires no parameters to set.

关键词: Support vector machine (SVM),  Rough line rule,  Parameter selection,  Linear search,  Motion prediction 
[1] Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour. A robust intelligent audio watermarking scheme using support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1320-1330.
[2] G. R. Brindha, P. Swaminathan, B. Santhi. Performance analysis of new word weighting procedures for opinion mining[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.
[3] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. Using Kinect for real-time emotion recognition via facial expressions[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[4] Nu Wen, Shi-zhi Yang, Cheng-jie Zhu, Sheng-cheng Cui. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 664-674.
[5] Jian Shi, Shu-you Zhang, Le-miao Qiu. Credit scoring by feature-weighted support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 197-204.
[6] Zhi-yong Yan, Cong-fu Xu, Yun-he Pan. Improving naive Bayes classifier by dividing its decision regions[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 647-657.
[7] Wen-de Dong, Yue-ting Chen, Zhi-hai Xu, Hua-jun Feng, Qi Li. Image stabilization with support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 478-485.
[8] Wei-dong Chen, Jian-hui Zhang, Ji-cai Zhang, Yi Li, Yu Qi, Yu Su, Bian Wu, Shao-min Zhang, Jian-hua Dai, Xiao-xiang Zheng, Dong-rong Xu. A P300 based online brain-computer interface system for virtual hand control[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 587-597.
[9] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.
[10] Hyeon Chang Lee, Byung Jun Kang, Eui Chul Lee, Kang Ryoung Park. Finger vein recognition using weighted local binary pattern code based on a support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 514-524.