Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (11): 873-884    DOI: 10.1631/jzus.C1100005
    
Efficient shape matching for Chinese calligraphic character retrieval
Wei-ming Lu, Jiang-qin Wu*, Bao-gang Wei, Yue-ting Zhuang
School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(2486KB)
Export: BibTeX | EndNote (RIS)      

Abstract  An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.

Key wordsCalligraphy      Shape feature      Character retrieval      Efficient matching     
Received: 02 January 2011      Published: 04 November 2011
CLC:  TP391.4  
Cite this article:

Wei-ming Lu, Jiang-qin Wu, Bao-gang Wei, Yue-ting Zhuang. Efficient shape matching for Chinese calligraphic character retrieval. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 873-884.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1100005     OR     http://www.zjujournals.com/xueshu/fitee/Y2011/V12/I11/873


Efficient shape matching for Chinese calligraphic character retrieval

An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods, keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results demonstrate that our approaches are effective and efficient for calligraphic character retrieval.

关键词: Calligraphy,  Shape feature,  Character retrieval,  Efficient matching 
[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[3] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[4] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. Level-direction decomposition analysis with a focus on image watermarking framework[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. Two-level hierarchical feature learning for image classification[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. Segmentation and focus-point location based on boundary analysis in forest canopy hemispherical photography[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. Unseen head pose prediction using dense multivariate label distribution[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. Global influenza surveillance with Laplacian multidimensional scaling[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. Local uncorrelated local discriminant embedding for face recognition[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. Beyond bag of latent topics: spatial pyramid matching for scene category recognition[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. Deformable image registration with geometric changes[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. Detection of engineering vehicles in high-resolution monitoring images[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[15] Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu. A method of shadow puppet figure modeling and animation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 367-379.