Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (8): 664-674    DOI: 10.1631/jzus.C1300377
    
Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration
Nu Wen, Shi-zhi Yang, Cheng-jie Zhu, Sheng-cheng Cui
Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China; University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, we present an adaptive two-step contourlet-wavelet iterative shrinkage/thresholding (TcwIST) algorithm for remote sensing image restoration. This algorithm can be used to deal with various linear inverse problems (LIPs), including image deconvolution and reconstruction. This algorithm is a new version of the famous two-step iterative shrinkage/thresholding (TwIST) algorithm. First, we use the split Bregman Rudin-Osher-Fatemi (ROF) model, based on a sparse dictionary, to decompose the image into cartoon and texture parts, which are represented by wavelet and contourlet, respectively. Second, we use an adaptive method to estimate the regularization parameter and the shrinkage threshold. Finally, we use a linear search method to find a step length and a fast method to accelerate convergence. Results show that our method can achieve a signal-to-noise ratio improvement (ISNR) for image restoration and high convergence speed.

Key wordsImage restoration      Adaptive      Cartoon-texture decomposition      Linear search      Iterative shrinkage/thresholding     
Received: 26 December 2013      Published: 06 August 2014
CLC:  TP7  
Cite this article:

Nu Wen, Shi-zhi Yang, Cheng-jie Zhu, Sheng-cheng Cui. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 664-674.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300377     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I8/664


自适应轮廓波–小波迭代收缩遥感图像复原算法

研究目的:针对遥感图像的特点,使用分解模型,提高复原质量;使用自适应方法和线性搜索方法提高复原图像质量和迭代算法的收敛速度。
创新要点:使用基于稀疏字典的分解模型,提高了复原图像的质量;使用自适应方法和经验方法,弥补了复原问题先验知识不足的缺点;使用线性搜索和快速迭代算法,有效提高了算法的收敛速度。
方法提亮:首先,利用基于稀疏字典的分裂BregmanRudin-Osher-Fatemi模型,将图像分解为卡通和纹理两部分,分别用小波变换和轮廓波变换表示。接着,运用自适应方法估计正则化参数和经验方法计算收缩阈值。最后,使用线性搜索方法寻找步长,并结合快速收缩算法加速算法收敛。
重要结论:相比于两步迭代算法,基于自适应的轮廓波–小波迭代收缩算法能有效提高复原图像的改善信噪比,同时加快了算法的收敛速度。

关键词: 图像复原,  自适应,  卡通–,  纹理分解,  线性搜索,  迭代收缩 
[1] You LIU , Qing SHEN , Dong-li MA , Xiang-jiang YUAN. Steering control for underwater gliders[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 898-914.
[2] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 303-316.
[3] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[4] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. Posture control of a 3-RPS pneumatic parallel \\[3mm] platform with parameter initialization and an \\[4mm] adaptive robust method[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 303-316.
[5] Erfan Shaghaghi, Mohammad Reza Jabbarpour, Rafidah Md Noor, Hwasoo Yeo, Jason J. Jung. Adaptive green traffic signal controlling using vehicular communication[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 373-393.
[6] Yong-chun Xie, Huang Huang, Yong Hu, Guo-qi Zhang. Applications of advanced control methods in spacecrafts: progress, challenges, and future prospects[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 841-861.
[7] Peng Xiao, Zhi-yang Li, Song Guo, Heng Qi, Wen-yu Qu, Hai-sheng Yu. A K self-adaptive SDN controller placement for wide area networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 620-633.
[8] Jin Wang, Feng Shu, Ri-qing Chen, Yu-di Cui, Yu Chen, Jun Li. Adaptive robust beamformer for multi-pair two-way relay networks with imperfect channel state information[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 265-280.
[9] Meng-di Jiang, Yi Li, Wei Liu. Properties of a general quaternion-valued gradient operator and its applications to signal processing[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 83-95.
[10] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[11] Xiao-yu ZHANG. Application of direct adaptive fuzzy sliding mode control into a class of non-affine discrete nonlinear systems[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1331-1343.
[12] Wei Xia, Ju-lei Zhu, Wen-ying Jiang, Ling-feng Zhu. An enhanced mixed modulated Lagrange explicit time delay estimator with noisy input[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1067-1073.
[13] Qi-yan TIAN,Jian-hua WEI,Jin-hui FANG,Kai GUO. Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 55-66.
[14] Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain. Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 474-485.
[15] Wei Lu, Zhi-yu Xiang, Ji-lin Liu. Design of an enhanced visual odometry by building and matching compressive panoramic landmarks online[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 152-165.