Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (6): 474-485    DOI: 10.1631/FITEE.1400295
    
Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics
Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain
Sant Longowal Institute of Engineering and Technology, Deemed University, Punjab 148106, India
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Accurate blood pressure (BP) measurement is essential in epidemiological studies, screening programmes, and research studies as well as in clinical practice for the early detection and prevention of high BP-related risks such as coronary heart disease, stroke, and kidney failure. Posture of the participant plays a vital role in accurate measurement of BP. Guidelines on measurement of BP contain recommendations on the position of the back of the participants by advising that they should sit with supported back to avoid spuriously high readings. In this work, principal component analysis (PCA) is fused with forward stepwise regression (SWR), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and the least squares support vector machine (LS-SVM) model for the prediction of BP reactivity to an unsupported back in normotensive and hypertensive participants. PCA is used to remove multi-collinearity among anthropometric predictor variables and to select a subset of components, termed ‘principal components’ (PCs), from the original dataset. The selected PCs are fed into the proposed models for modeling and testing. The evaluation of the performance of the constructed models, using appropriate statistical indices, shows clearly that a PCA-based LS-SVM (PCA-LS-SVM) model is a promising approach for the prediction of BP reactivity in comparison to others. This assessment demonstrates the importance and advantages posed by hybrid models for the prediction of variables in biomedical research studies.

Key wordsBlood pressure (BP)      Principal component analysis (PCA)      Forward stepwise regression      Artificial neural network (ANN)      Adaptive neuro-fuzzy inference system (ANFIS)      Least squares support vector machine (LS-SVM)     
Received: 18 August 2014      Published: 04 June 2015
CLC:  TP273  
  R544  
Cite this article:

Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain. Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 474-485.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400295     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I6/474


基于体位特征使用混杂模型预测血压对于无支撑后背的反应

目的:准确测量血压(BP)对于流行病学研究、筛查规划、调研研究和高血压相关病变(冠心病、中风、肾衰竭等)的早期诊断及预防有重要意义。被测者体位对于准确测量血压有重要影响。血压测量指南建议测试时被测者应在后背有支撑的情况下保持坐姿,以避免血压读数偏高。本文使用混杂模型预测血压对于无支撑后背的反应。
创新点:本文考虑血压正常和高血压测试者的人体预测变量(如年龄、身高、体重、体块指数和上臂周长(AC)),使用基于PCA的前向逐步回归(PCA-SWR)、基于PCA的人工神经网络(PCA-ANN)、基于PCA的自适应神经模糊推理系统(PCA-ANFIS)和基于PCA的最小方差支持向量机(PCA-LS-SVM)等模型预测血压对无支撑后背的反应。
方法:使用PCA消除人体预测变量间的多重共线性,并在原始数据集中选取主元(PC)。所选主元被输入至所建立预测模型用于建模及测试。
结论:通过评估合适的统计指标(确定性系数、平均平方根误差、平均绝对百分比误差),得出较之其他模型,PCA-LS-SVM对于预测血压反应较有前景。此评估也展示了混杂模型在预测生物医学领域其他参数时的重要性和先进性。

关键词: 血压(BP),  主元分析(PCA),  前向逐步回归,  人工神经网络,  自适应神经模糊推理系统,  最小方差支持向量机 
[1] Xiu-rui Geng, Lu-yan Ji, Kang Sun. Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 403-412.
[2] Min Du, Xing-shu Chen. Accelerated k-nearest neighbors algorithm based on principal component analysis for text categorization[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(6): 407-416.
[3] Ding-cheng Feng, Feng Chen, Wen-li Xu. Learning robust principal components from L1-norm maximization[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 901-908.
[4] Qing-zheng Xu, Lei Wang. Recent advances in the artificial endocrine system[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 171-183.
[5] Yan Deng, Xiang-ning He, Jing Zhao, Yan Xiong, Yan-qun Shen, Jian Jiang. Application of artificial neural network for switching loss modeling in power IGBTs[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(6): 435-443.