Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (8): 675-686    DOI: 10.1631/jzus.C1300337
    
Designing a location update strategy for free-moving and network-constrained objects with varying velocity
Yuan-Ko Huang, Lien-Fa Lin
Department of Information Communication, Kao-Yuan University, Taiwan 821, Kaohsiung County
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Spatio-temporal databases aim at appropriately managing moving objects so as to support various types of queries. While much research has been conducted on developing query processing techniques, less effort has been made to address the issue of when and how to update location information of moving objects. Previous work shifts the workload of processing updates to each object which usually has limited CPU and battery capacities. This results in a tremendous processing overhead for each moving object. In this paper, we focus on designing efficient update strategies for two important types of moving objects, free-moving objects (FMOs) and network-constrained objects (NCOs), which are classified based on object movement models. For FMOs, we develop a novel update strategy, namely the FMO update strategy (FMOUS), to explicitly indicate a time point at which the object needs to update location information. As each object knows in advance when to update (meaning that it does not have to continuously check), the processing overhead can be greatly reduced. In addition, the FMO update procedure (FMOUP) is designed to efficiently process the updates issued from moving objects. Similarly, for NCOs, we propose the NCO update strategy (NCOUS) and the NCO update procedure (NCOUP) to inform each object when and how to update location information. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed update strategies.

Key wordsSpatio-temporal databases      Moving objects      Free-moving objects      Network-constrained objects     
Received: 24 November 2013      Published: 06 August 2014
CLC:  TN929  
Cite this article:

Yuan-Ko Huang, Lien-Fa Lin. Designing a location update strategy for free-moving and network-constrained objects with varying velocity. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 675-686.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300337     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I8/675


具有变动速度之自由移动与移动受限物体位置更新策略设计

研究目的:为有效管理空间中具有变动速度之自由移动物体以及移动受限物体,设计更新策略,告知移动物体何时该更新自己的位置信息至服务器端,以显著降低移动物体计算成本。另外,设计更新程序以使服务器端有效率地处理物体更新。
方法提亮:针对自由移动与移动受限物体,明确地给出一个时间点。有此时间点,移动物体无需随时随地判断是否需要更新。对于服务器端,更新程序可以有效且快速地处理每个物体传回的更新需求。
重要结论:本文设计的更新策略可显著降低移动物体的处理成本。藉由本文设计的更新程序,可有效减少服务器端物体更新的处理成本,进而快速处理同时发生的物体更新。

关键词: 时空数据库,  移动物体,  自由移动物体,  移动受限物体 
[1] Hui Zhao, You-yu Tan, Gao-feng Pan, Yun-fei Chen. Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 578-590.
[2] Shafqat Ullah Khan, Ijaz Mansoor Qureshi, Fawad Zaman, Wasim Khan. Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 235-245.
[3] Ji-liang Zhang, Gao-feng Pan, Yi-yuan Xie. Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 246-252.
[4] Bo Li, Sung-kwon Park. Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1085-1094.
[5] Hui Zhao, Dan-yang Wang, Chao-qing Tang, Ya-ping Liu, Gao-feng Pan, Ting-ting Li, Yun-fei Chen. Physical layer security of underlay cognitive radio using maximal ratio combining[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 929-937.
[6] Jin Wang, Feng Shu, Ri-qing Chen, Yu-di Cui, Yu Chen, Jun Li. Adaptive robust beamformer for multi-pair two-way relay networks with imperfect channel state information[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 265-280.
[7] Qing-long Dai, Guo-chu Shou, Yi-hong Hu, Zhi-gang Guo. Performance improvement for applying network virtualization in fiber-wireless (FiWi) access networks[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 1058-1070.
[8] Mau-Luen Tham, Chee-Onn Chow, Yi-han Xu, Khong Neng Choong, Cheng Suan Lee. Seamless handover between unicast and multicast multimedia streams[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 929-942.
[9] Syed Adeel Ali Shah, Muhammad Shiraz, Mostofa Kamal Nasir, Rafidah Binti Md Noor. Unicast routing protocols for urban vehicular networks: review, taxonomy, and open research issues[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 489-513.
[10] Yi-han Xu, Chee-Onn Chow, Mau-Luen Tham, Hiroshi Ishii. An enhanced framework for providing multimedia broadcast/multicast service over heterogeneous networks[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 63-80.
[11] Chih-ho Chou, Kuo-yu Tsai, Tzong-chen Wu, Kuo-hui Yeh. Efficient and secure three-party authenticated key exchange protocol for mobile environments[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(5): 347-355.
[12] Ming-wei Tang, Xiao-xiang Wang. Resource allocation algorithm with limited feedback for multicast single frequency networks[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 146-154.
[13] Guang-yu Fan, Hui-fang Chen, Lei Xie, Kuang Wang. Funneling media access control (MAC) protocol for underwater acoustic sensor networks[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 932-941.
[14] Zheng-min Kong, Liang Zhong, Guang-xi Zhu, Li Ding. Differential multiuser detection using a novel genetic algorithm for ultra-wideband systems in lognormal fading channel[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 754-765.
[15] Zheng-min Kong, Guang-xi Zhu, Qiao-ling Tong, Yan-chun Li. A novel differential multiuser detection algorithm for multiuser MIMO-OFDM systems[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(10): 798-807.