Abstract:Digital transformation has become the core engine for high-quality economic development.By reshaping interactive networks among enterprises, suppliers, and customers and establishing a real-time data-sharing ecosystem, digital transformation enables procurement plans to dynamically align with production demands, logistics scheduling to precisely respond to market fluctuations, and inventory strategies to intelligently adapt to supply chain variability. This process propels the transformation of inventory management from experience-driven to data-driven, inevitably exerting a profound impact on enterprise inventory management. However, existing literature still lacks systematic research on the mechanisms through which digital transformation affects enterprise inventory levels. This study focuses on the impact mechanisms of digital transformation on inventory management, addressing two core questions: First, does digital transformation exhibit a significant inventory optimization effect? Second, through what channels does it achieve such optimization?Based on the Economic Order Quantity (EOQ) model, this paper first constructs a theoretical framework for inventory management, revealing the dynamic correlation mechanism between enterprises’ safety inventory levels and demand uncertainty, lead time length, and lead time uncertainty. Next, leveraging textual data from listed companies’ annual reports, we develop a digital transformation index using the Term Frequency-Inverse Document Frequency (TF-IDF) machine learning method. Empirical analysis via panel fixed-effects models validates the impact of digital transformation on inventory management, transcending the traditional framework of internet technology-driven optimization. Finally, we analyze the underlying mechanisms and heterogeneity across firms in terms of data-driven capabilities and information-sharing practices. The findings indicate that digital transformation optimizes inventory levels by effectively reducing demand uncertainty, shortening and stabilizing lead times through data-driven approaches, intelligent forecasting, and information sharing. Unlike internet technologies, which are confined to optimizing information transmission, digital transformation leverages big data, artificial intelligence, and the Internet of Things (IoT) to deeply exploit data value, reshaping inventory management models from optimizing inventory forecasting to supply chain collaboration. Thus, digital transformation represents not merely “optimized information transmission” but “intelligent decision-making empowerment”, yielding a more far-reaching impact on inventory management. Further analysis shows that the inventory reduction effect of digital transformation is more pronounced in enterprises with strong data generation and acquisition capabilities and high willingness to share information, whereas the effect is relatively weaker in enterprises with restricted data circulation, low social network status, or distant customer geographical proximity.Digital transformation serves as a critical pathway to enhancing enterprise supply chain competitiveness. The government needs to build a multi-level and systematic support system for enterprise digital transformation. On the one hand, while promoting digital transformation, it should accelerate the construction of digital infrastructure and improve data property rights and transaction regulations to form a coordinated policy implementation framework. On the other hand, it is necessary to adopt differentiated transformation incentives and inventory reduction guidance policies based on the specific conditions of enterprises to enhance the precision and effectiveness of policy implementation. Priority should be given to launching digital transformation pilot projects in enterprises with strong data element integration capabilities and high willingness to share information, while providing targeted subsidies and technological empowerment to enterprises with restricted data circulation.
1 李斌、杨冉、卢娟等:《企业数字化转型、供应链溢出与劳动力技能偏向》,《数量经济技术经济研究》2024年第8期,第133-153页。 2 陶锋、王欣然、徐扬等:《数字化转型、产业链供应链韧性与企业生产率》,《中国工业经济》2023年第5期,第118-136页。 3 Chen Y. & Xu J., “Digital transformation and firm cost stickiness: evidence from China,” Finance Research Letters, Vol. 52 (2023), https://doi.org/10.1016/j.frl.2022.103510. 4 刘骏、张义坤:《数字化转型能提高企业供应链效率吗?——来自中国制造业上市公司年报文本分析的证据》,《产业经济研究》2023年第6期,第73-86页。 5 Zahran S. K. & Jaber M. Y., “Investigation of a consignment stock and a traditional inventory policy in a three-level supply chain system with multiple-suppliers and multiple-buyers,” Applied Mathematical Modelling, Vol. 44, No. 2 (2017), pp. 390-408. 6 刘树海:《货币政策冲击、存货持有行为与企业避税强度——基于融资约束视角的经验证据》,《税务研究》2019年第1期,第86-93页。 7 戴严科、林曙:《利率波动、融资约束与存货投资——来自中国制造业企业的证据》,《金融研究》2017年第4期,第95-111页。 8 李雨浓、赵维、周茂等:《外资管制放松如何影响企业非产成品存货调整》,《中国工业经济》2020年第9期,第118-136页。 9 杨德明、陆明、刘钰:《“互联网+”、降库存与全要素生产率》,《财务研究》2019年第2期,第26-36页。 10 毛其淋、王凯璇:《互联网发展如何优化企业资源配置——基于企业库存调整的视角》,《中国工业经济》2023年第8期,第137-154页。 11 李涵、唐丽淼:《交通基础设施投资、空间溢出效应与企业库存》,《管理世界》2015年第4期,第126-136页。 12 张勋、王旭、万广华等:《交通基础设施促进经济增长的一个综合框架》,《经济研究》2018年第1期,第50-64页。 13 段文奇、景光正:《贸易便利化、全球价值链嵌入与供应链效率——基于出口企业库存的视角》,《中国工业经济》2021年第2期,第117-135页。 14 Choi T. M., Wallace S. W. & Wang Y., “Big data analytics in operations management,” Production and Operations Management, Vol. 27, No. 10 (2018), pp. 1868-1883. 15 Lee H. L. & Billington C., “Managing supply chain inventory: pitfalls and opportunities,” Sloan Management Review, Vol. 33, No. 3 (1992), pp. 65-73. 16 Fildes R., Goodwin P. & Lawrence M. et al., “Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning,” Journal of Forecasting, Vol. 25, No. 1 (2009), pp. 3-23. 17 Waller M. A. & Fawcett S. E., “Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management,” Journal of Business Logistics, Vol. 34, No. 2 (2013), pp. 77-84. 18 王东升、贾婳、李琦等:《平台商业模式企业的价值创造——基于阿里巴巴的案例研究》,《会计之友》2021年第13期,第28-35页。 19 赵一奇:《基于大数据分析的实时供应链库存优化策略研究》,《中国物流与采购》2024年第15期,第63-64页。 20 Ghobakhloo M., “Industry 4.0, digitization, and opportunities for sustainability,” Journal of Cleaner Production, Vol. 252 (2020), https://doi.org/10.1016/j.jclepro.2019.119869. 21 Chang W. S. & Lin Y. T., “The effect of lead-time on supply chain resilience performance,” Asia Pacific Management Review, Vol. 24, No. 4 (2019), pp. 298-309. 22 Ekinci E., Sezer M. D. & Mangla S. K. et al., “Building sustainable resilient supply chain in retail sector under disruption,” Journal of Cleaner Production, Vol. 434 (2024), https://doi.org/10.1016/j.jclepro.2023.139980. 23 Rana J., Daultani Y. & Goswami M. et al., “Exploring the impact of supply chain digital transformation on supply chain performance: an empirical investigation,” Business Strategy and the Environment, Vol. 34, No. 3 (2025), pp. 3497-3521. 24 Hazen B. T., Skipper J. B. & Boone C. A. et al., “Back in business: operations research in support of big data analytics for operations and supply chain management,” Annals of Operations Research, Vol. 270 (2018), pp. 201-211. 25 贾建鸿、叶春明:《数字化转型对物流企业供应链管理的影响》,《物流科技》2022年第18期,第105-109页。 26 Ben-Daya M., Hassini E. & Bahroun Z., “Internet of things and supply chain management: a literature review,” International Journal of Production Research, Vol. 57, No. 15-16 (2019), pp. 4719-4742. 27 凌伟泉:《企业供应链管理的数字化转型策略》,《中国商界》2024年第11期,第52-53页。 28 赵玲、黄昊:《不确定性冲击、数字技术创新与供应链韧性》,《中南财经政法大学学报》2024年第4期,第148-160页。 29 耿勇、向晓建、徐飞:《数字化转型能否打破地理距离约束?——来自企业供应链地理分布的证据》,《经济管理》2024年第3期,第165-185页。 30 张树山、张佩雯、谷城:《企业数字化转型与供应链效率》,《统计与决策》2023年第18期,第169-173页。 31 韩峰、黄敏、姜竹青:《企业数字化、网络地位与污染减排》,《世界经济》2024年第2期,第204-232页。 32 Acemoglu D., Ozdaglar A. & Siderius J., “Misinformation: strategic sharing, homophily, and endogenous echo chambers,” 2021-05-26, https://docslib.org/doc/6245151/strategic-sharing-homophily-and-endogenous-echo-chambers. 33 吴非、胡慧芷、林慧妍等:《企业数字化转型与资本市场表现——来自股票流动性的经验证据》,《管理世界》2021年第7期,第130-144页。 34 巫强、姚雨秀:《企业数字化转型与供应链配置:集中化还是多元化》,《中国工业经济》2023年第8期,第99-117页。 35 何小钢、朱国悦:《互联网使用与企业库存决策行为:理论机制与中国证据》,《中央财经大学学报》2021年第12期,第119-132页。 36 易露霞、吴非、常曦:《企业数字化转型进程与主业绩效——来自中国上市企业年报文本识别的经验证据》,《现代财经(天津财经大学学报)》2021年第10期,第24-38页。 37 郭德兵、李志献、魏春华:《经济政策不确定性与企业存货持有量》,《财会通讯》2020年第21期,第73-76页。 38 罗明津、铁瑛:《企业金融化与劳动收入份额变动》,《金融研究》2021年第8期,第100-118页。 39 Bahar D. & Rapoport H., “Migration, knowledge diffusion and the comparative advantage of nations,” Economic Journal, Vol. 128, No. 612 (2018), pp. 273-305. 40 邱子迅、周亚虹:《数字经济发展与地区全要素生产率——基于国家级大数据综合试验区的分析》,《财经研究》2021年第7期,第4-17页。 41 蔡卫星、倪骁然、赵盼等:《企业集团对创新产出的影响:来自制造业上市公司的经验证据》,《中国工业经济》2019年第1期,第137-155页。 42 张咏梅、王晓艳、赵金凯:《以“数”谋“盈”:企业数字化转型对盈余持续性的影响研究》,《审计与经济研究》2024年第1期,第75-84页。 43 Fisher M. L., “What is the right supply chain for your product?” Harvard Business Review, Vol. 75, No. 2 (1997), pp. 105-116. 44 Bloom N., “The impact of uncertainty shocks,” Econometrica, Vol. 77, No. 3 (2009), pp. 623-685. 45 何小钢、黄莹珊:《高铁开通能否降低企业库存:来自中国制造业企业的证据》,《产业经济评论》2022年第2期,第128-149页。 46 Rumyantsev S. & Netessine S., “What can be learned from classical inventory models: a cross-industry exploratory investigation,” Manufacturing & Service Operations Management, Vol. 9, No. 4 (2007), pp. 409-429. 47 赵泉午、廖勇海、黄亚峰:《制造企业库存管理与企业绩效的实证研究——基于沪深制造类上市公司1997—2010年的面板数据》,《数理统计与管理》2012年第2期,第207-216页。 48 张勇、侯路遥:《数字化转型与企业存货调整行为——基于文本分析方法的经验证据》,《南京财经大学学报》2023年第5期,第36-46页。 49 Fernandes A., Mattoo A. & Nguyen H. et al., “The internet and Chinese exports in the pre-Alibaba era,” Journal of Development Economics, Vol. 138 (2019), pp. 57-76. 50 Rauch J. E., “Networks versus markets in international trade,” Journal of International Economics, Vol. 48, No. 1 (1999), pp. 7-35. 51 Giroud X. & Mueller H. M., “Corporate governance, product market competition, and equity prices,” The Journal of Finance, Vol. 66, No. 2 (2011), pp. 563-600. 52 杜振华、茶洪旺:《数据产权制度的现实考量》,《重庆社会科学》2016年第8期,第19-25页。 53 王少华、王敢娟、董敏凯:《供应链网络位置、数字化转型与企业全要素生产率》,《上海财经大学学报》2024年第3期,第3-17页。 54 张树山、谷城:《供应链数字化与供应链韧性》,《财经研究》2024年第7期,第21-34页。 55 邱保印、余梦、左静静:《社会信用体系建设能否促进企业数字化转型?——基于社会信用体系改革试点的准自然实验》,《上海财经大学学报》2023年第5期,第92-106页。 56 彭正银、黄晓芬、隋杰:《跨组织联结网络、信息治理能力与创新绩效》,《南开管理评论》2019年第4期,第187-198页。 57 陈祖胜、叶江峰、林明等:《联盟企业的网络位置差异、行业环境与网络位置跃迁》,《管理科学》2018年第2期,第96-104页。 58 刘晨、王俊秋、花贵如:《供应链溢出效应下企业数字化转型的动因研究》,《管理学报》2024年第6期,第938-947页。 59 Lim M., Mak H. & Shen Z., “Agility and proximity considerations in supply chain design,” Management Science, Vol. 63, No. 4 (2017), pp. 1026-1041. 60 郑祯、黄妙环、冯艳清等:《客户管理者短视与供应商风险承担——基于文本分析的经验证据》,《会计研究》2024年第1期,第139-151页。 61 唐斯圆、李丹:《上市公司供应链地理距离与审计费用》,《审计研究》2019年第1期,第72-80页。