Please wait a minute...
Journal of Zhejiang University (Science Edition)  2021, Vol. 48 Issue (5): 531-539    DOI: 10.3785/j.issn.1008-9497.2021.05.002
Image Analysis and 3D Reconstruction     
Rapid 3D reconstruction of bean plant for accurate phenotype identification
FU Rujia1, XIAN Chuhua1, LI Guiqing1, WAN Juanjie2, CAO Cheng2, YANG Cunyi2, GAO Yuefang2
1.School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
2.College of Agriculture, South China Agricultural University, Guangzhou 510640, China
Download: HTML (   PDF(2239KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Using computer vision and image technology to digitally reconstruct plants is an important means for plant phenotyping. In this paper, we take the common grain crop legume plants in China as the research object, study the rapid three-dimensional digital reconstruction of the bean plants based on the depth images collected by the RGB-D depth camera for accurate phenotype identification. Firstly, the skeleton points are extracted from the point cloud of bean plant by employing a hierarchical clustering algorithm. Secondly, the backbone skeleton points of the first stage are connected according to the shortest distance of each skeleton point to the root node. According to the morphological characteristics, the connection points of the subgraph and the backbone graph are filtered out and the path growth of the subgraph is performed. Finally, the 3D plant model is reconstructed based on the connected skeleton. Experiments show that, under a single frame and registration data of multiple real soybean plants point cloud, the method of this article can carry out rapid three-dimensional reconstruction of the soybean plants with different morphological characteristics, and it is robust for situations such as low resolution, large noise interference, and large registration error.

Key wordsplant modeling      plant 3D reconstruction      plant phenotyping      skeleton extraction     
Received: 08 December 2020      Published: 15 September 2021
CLC:  TP 391.41  
Cite this article:

FU Rujia, XIAN Chuhua, LI Guiqing, WAN Juanjie, CAO Cheng, YANG Cunyi, GAO Yuefang. Rapid 3D reconstruction of bean plant for accurate phenotype identification. Journal of Zhejiang University (Science Edition), 2021, 48(5): 531-539.

URL:

https://www.zjujournals.com/sci/EN/Y2021/V48/I5/531


面向表型精确鉴定的豆株快速三维重建

利用计算机视觉与图像技术对植物进行数字化重建是植物表型组学的重要手段。以国内常见的粮食作物豆类植株为研究对象,利用RGB-D深度相机采集的深度图像对豆株进行快速三维数字化重建,首先,基于点云分层聚类提取点云骨架点;然后,根据各骨架点到根节点的最短距离连接第一阶段的主干骨架点,并根据形态特征筛选子图和主干图的连接点、选择子图生长路径;最后,由连接骨架进行植物数字化建模。实验表明,基于真实大豆植株点云的单帧和配准数据,本文方法能对不同形态特征的大豆植株进行快速三维重建,并能对分辨率不高、噪音干扰较大、配准误差较大等情形做处理。

关键词: 植物建模,  植物表型组学,  骨架提取,  植物三维重建 
1 BLUM H. Biological shape and visual science (Part I)[J]. Journal of Theoretical Biology, 1973, 38(2): 205-287. DOI: 10.1016/0022-5193(73)90175-6
2 CAO J, TAGLIASACCHI A, OLSON M, et al. Point cloud skeletons via laplacian based contraction[C]//2010 Shape Modeling International Conference. Piscataway: IEEE, 2010: 187-197. DOI: 10.1109/SMI.2010.25.
3 DEY T K, ZHAO W L. Approximating the medial axis from the Voronoi diagram with a convergence guarantee[J]. Algorithmica, 2004, 38(1): 179-200. DOI: 10.1007/s00453-003-1049-y
4 SHINAGAWA Y, KUNII T L. Constructing a Reeb graph automatically from cross sections[J]. IEEE Computer Graphics and Applications, 1991 (6): 44-51. DOI: 10.1109/38.103393.
5 HUANG H, WU S H, COHEN-OR D, et al. L1-medial skeleton of point cloud[J]. ACM Transactions on Graphic,2013, 32(4):65. DOI: 10.1145/2461912. 2461913.
6 SHARF A, LEWINER T, SHAMIR A, et al. On the fly curve skeleton computation for 3D shapes[J]. Computer Graphics Forum, 2007, 26(3): 323-328. DOI: 10.1111/j.1467-8659.2007.01054.x
7 NIBLACK C W, GIBBONS P B, CAPSON D W. Generating skeletons and centerlines from the distance transform[J]. CVGIP: Graphical Models and Image Processing, 1992, 54(5): 420-437. DOI: 10.1016/1049-9652(92)90026-T
8 WU F C, MA W C, LIOU P C, et al. Skeleton extraction of 3D objects with visible repulsive force[C]//KOBBELT L,SCHEDER P,HOPDE H.Eurographics Symposium on Geometry Processing. New York: ACM Press, 2003.
9 LIVNY Y, YAN F, OLSON M, et al. Automatic reconstruction of tree skeletal structures from point clouds[J]. ACM Transaction of Graphics, 2010, 29(6):151. DOI: 10.1145/1866158.1866177
10 DU S L, LINDENBERGH R, LEDOUX H, et al. AdTree: Accurate, detailed, and automatic modelling of laser-scanned trees[J]. Remote Sensing, 2019, 11(18): 2074. DOI: 10.3390/rs11182074
11 BREMER M, RUTZINGER M, WICHMANN V. Derivation of tree skeletons and error assessment using LiDAR point cloud data of varying quality[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 39-50. DOI: 10.1016/j.isprsjprs. 2013.03.003
12 张天安, 云挺, 薛联凤, 等. 基于骨架提取的树木主枝干三维重建算法[J]. 南京师范大学学报 (工程技术版), 2014, 14(4): 51-57. DOI: 10.3969/j.issn. 1672-1292.2014.04.009 ZHANG T A, YUN T, XUE L F, et al. Three-Dimensional reconstruction algorithm of tree limbs based on skeleton extraction[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2014, 14(4): 51-57. DOI: 10.3969/j.issn. 1672-1292.2014.04.009
13 PFEIFER N, WINTERHALDER D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Nice: ISPRS, 2004: 76-81. doi:doi:10.1109/TEST.2004.1387399
14 RUTZINGER M, PRATIHAST A K, OUDE ELBERINK S, et al. Detection and modelling of 3D trees from mobile laser scanning data[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Nice: ISPRS, 2010: 520-525. doi:10.1111/j.1477-9730.2011.00635.x
15 TEOBALDELLI M, PUIG A D, ZENONE T, et al. Building a topological and geometrical model of poplar tree using portable on-ground scanning LIDAR[J]. Functional Plant Biology, 2008, 35(10): 1080-1090. DOI: 10.1071/FP08053.
16 XU H, GOSSETT N, CHEN B Q. Knowledge and heuristic-based modeling of laser-scanned trees[J]. ACM Transactions on Graphics, 2007, 26(4): 19-es. DOI: 10.1145/1289603.1289610
17 BUCKSCH A, LINDENBERGH R. CAMPINO: A skeletonization method for point cloud processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 115-127. DOI: 10. 1016/j.isprsjprs.2007.10.004
18 钟南, 罗锡文, 秦琴. 基于生长函数的大豆根系生长的三维可视化模拟[J]. 农业工程学报, 2008, 24(7): 151-154. DOI: 10.3321/j.issn:1002-6819. 2008.07.031 ZHONG N, LUO X W, QIN Q. Modeling and visualization of three-dimensional soybean root system growth based on growth functions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(7): 151-154. DOI: 10.3321/j.issn:1002-6819.2008.07.031
19 刘阁, 周国民, 胡林. 基于 L 系统的开心形苹果树枝干模型[J]. 安徽农业科学, 2009, 37(16): 7795-7796, 7804. DOI: 10.3969/j.issn.0517-6611.2009. 16.191 LIU G, ZHOU G M, HU L. Trunk and branch model of open-center apple tree based on the L system[J]. Journal of Anhui Agricultural Sciences, 2009, 37(16): 7795-7796, 7804. DOI: 10.3969/j.issn.0517-6611.2009.16.191
20 陈动, 张振鑫, 王臻, 等. 骨架优化下的地面激光树木点云重建方法[J]. 地球信息科学学报, 2019, 21(2): 236-248. DOI:10.12082/dqxxkx.2019.180223 CHEN D, ZHANG Z X, WANG Z, et al. Individual tree modeling from terrestrial laser scanning point clouds via skeleton-based optimization[J]. Journal of Geo-Information Science, 2019, 21(2): 236-248. DOI:10.12082/dqxxkx.2019.180223
[1] Yuhua FANG,Feng YE. MFDC-Net: A breast cancer pathological image classification algorithm incorporating multi-scale feature fusion and attention mechanism[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 455-464.
[2] Ruiqi YU,Yuhua LIU,Xilong SHEN,Ruyu ZHAI,Xiang ZHANG,Zhiguang ZHOU. Representation learning driven multiple graph sampling[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 271-279.
[3] Jintai ZHU,Jihua YE,Feng GUO,Lu JIANG,Aiwen JIANG. FSAGN:An expression recognition method based on independent selection of video key frames[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 141-150.
[4] Ying ZHONG,Song WANG,Hao WU,Zepeng CHENG,Xuejun LI. SEMMA-Based visual exploration of cyber security event[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 131-140.
[5] Qiang ZHU,Chaoyi WANG,Jiqing ZHANG,Baocai YIN,Xiaopeng WEI,Xin YANG. UAV target tracking algorithm based on event camera[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 10-18.
[6] Meng YANG,Shu DING,Yuntao MA,Jiayi XIE,Ruifeng DUAN. Dynamic simulation method of wheat rust based on texture feature[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 1-9.
[7] YU Peng, LIU Lan, CAI Yun, HE Yu, ZHANG Songhai. Home fitness monitoring system based on monocular camera[J]. Journal of Zhejiang University (Science Edition), 2021, 48(5): 521-530.
[8] GUI Zhiqiang, YAO Yuyou, ZHANG Gaofeng, XU Benzhu, ZHENG Liping. An efficient computation method of 3D-power diagram[J]. Journal of Zhejiang University (Science Edition), 2021, 48(4): 410-417.
[9] XU Min, WANG Ke, DAI Haoran, LUO Xiaobo, YU Weilun, TAO Yubo, LIN Hai. Visual analysis of cohorts and treatments of breast cancer based on electronic health records[J]. Journal of Zhejiang University (Science Edition), 2021, 48(4): 391-401.
[10] ZOU Beiji, YANG Wenjun, LIU Shu, JIANG Lingzi. A three-stage text recognition framework for natural scene images[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 1-8.
[11] CHEN Yuanqiong, ZOU Beiji, ZHANG Meihua, LIAO Wangmin, HUANG Jiaer, ZHU Chengzhang. A review on deep learning interpretability in medical image processing[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 18-29.
[12] DENG Huijun. Ranking-supported interactive data classification method and its application[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 9-17.
[13] LI Huabiao, HOU Xiaogang, WANG Tingting, ZHAO Haiying. An unified generation scheme of traditional patterns based on rule learning[J]. Journal of Zhejiang University (Science Edition), 2020, 47(6): 669-676.
[14] TAN Jieqing, CAO Ningning. A new Midedge scheme of quadrilateral mesh[J]. Journal of Zhejiang University (Science Edition), 2019, 46(2): 154-163.