Please wait a minute...
Journal of Zhejiang University (Science Edition)  2024, Vol. 51 Issue (1): 29-40    DOI: 10.3785/j.issn.1008-9497.2024.01.005
Mathematics and Computer Science     
High resolution rotated flux scheme for two-dimensional magnetohydrodynamics equations
Supei ZHENG,Mengqing ZHAI(),Qi LI,Mangmang JIAN
School of Science,Chang'an University,Xi'an 710064,China
Download: HTML( 0 )   PDF(2770KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The rotated flux method could be used to effectively eliminate the shock instability of the approximate Riemann solver and suppress the generation of non-physical phenomenon if the equations to be solved meet the rotational invariance. For the 2D ideal magnetohydrodynamics (MHD) and shallow water magnetohydrodynamics (SWMHD) equations, the rotation-like matrix of flux function was constructed, and the corresponding rotational invariance theorem was given with proof, which was then used to deal with the governing equations applying quasi-1D method to derive the semi-discrete rotated flux scheme. Combining entropy stable flux and anti-diffusive flux by a flux limiter, a new flux that can adaptively adjust the dissipation term was obtained. Numerical experiments show that the new scheme can accurately capture the structure of solution, has high resolution, strong robustness and can be easily extended to higher dimensions.



Key wordsideal magnetohydrodynamics equations      shallow water magnetohydrodynamics equations      rotational invariance      high resolution entropy stable flux     
Received: 27 September 2022      Published: 10 January 2024
CLC:  O 241.82  
Corresponding Authors: Mengqing ZHAI     E-mail: zhaimengqing2016@163.com
Cite this article:

Supei ZHENG,Mengqing ZHAI,Qi LI,Mangmang JIAN. High resolution rotated flux scheme for two-dimensional magnetohydrodynamics equations. Journal of Zhejiang University (Science Edition), 2024, 51(1): 29-40.

URL:

https://www.zjujournals.com/sci/EN/Y2024/V51/I1/29


二维磁流体方程的高分辨率旋转通量格式

若待解方程满足旋转不变性,则可通过旋转通量法有效消除近似Riemann求解器的激波不稳定现象,抑制非物理现象的产生。针对二维理想磁流体(MHD)方程和浅水波磁流体(SWMHD)方程,构造了通量函数的类旋转矩阵,给出了方程的旋转不变性证明;根据该性质对控制方程做类一维处理,推导了方程的半离散旋转通量格式;利用通量限制器,将熵稳定通量和反扩散通量进行加权组合,得到能够自适应调整耗散量的高分辨率旋转通量格式。数值实验表明,此格式能精确捕捉解的结构,分辨率高、鲁棒性强,且易向高维推广。


关键词: 理想磁流体方程,  浅水波磁流体方程,  旋转不变性,  高分辨率熵稳定通量 
变量区域
IIIIIIIV
ρ0.930 81.030 41.000 01.888 7
ρu1.455 71.577 41.750 00.233 4
ρv-0.463 3-1.045 5-1.000 0-1.742 2
ρw0.057 5-0.101 60.000 00.073 3
ρe5.083 85.781 36.000 012.999 0
B10.350 10.350 10.564 20.564 2
B20.983 00.507 80.507 80.983 0
B30.350 00.157 60.253 90.491 5
Table 1 The initial condition for 2D Riemann problem
Fig.1 Numerical results of ES scheme for 2D Riemann problem
Fig.2 Numerical results of ESLR scheme for 2D Riemann problem
Fig.3 Change of total entropy with time for 2D Riemann problem
Fig.4 Numerical results of ES scheme for First Rotor problem
Fig.5 Numerical results of ESLR scheme for First Rotor problem
Fig.6 Change of total entropy with time for First Rotor problem
Fig.7 Numerical results of ES scheme for blast wave problem
Fig.8 Numerical results of ESLR scheme for blast wave problem
Fig.9 Change of total entropy with time for blast wave problem
Fig.10 Numerical results of Orszag-Tang-like turbulence problemNote Left is ES scheme, right is ESLR scheme,
Fig.11 Change of total entropy with time for Orszag-Tang-like turbulence problem
Fig.12 Change of total entropy with time for two separated conducting fluids problem
Fig.13 Numerical results of two separated conducting fluids problem
Fig.14 Numerical results of Rotor-like problem
Fig.15 Change of total entropy with time for Rotor-like problem
[1]   XU X, GAO Z M, DAI Z H. A 3D staggered Lagrangi-an scheme for ideal magnetohydrodynamics on unstr-uctured meshes[J]. International Journal for Numerical Methods in Fluids, 2019, 90(11): 584-602. DOI:10.1002/fld.4736
doi: 10.1002/fld.4736
[2]   FU L, TANG Q. High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics[J]. Journal of Scientific Computing, 2019, 80(1): 692-716. DOI:10.1007/s10915-019-00941-2
doi: 10.1007/s10915-019-00941-2
[3]   MATTIA G, MIGNONE A. A comparison of approxi-mate non-linear Riemann solvers for relativistic MHD[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(1): 481-499. DOI:10.1093/mnras/stab3373
doi: 10.1093/mnras/stab3373
[4]   WINTERS A R, GASSNER G J. Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations[J]. Journal of Computational Physics, 2016, 304(1): 72-108. DOI:10.1016/j.jcp.2015.09.055
doi: 10.1016/j.jcp.2015.09.055
[5]   DUAN J M, TANG H Z. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics[J]. Journal of Computational Physics, 2021, 431: 110136. DOI:10.1016/j.jcp.2021. 110136
doi: 10.1016/j.jcp.2021. 110136
[6]   WINTERS A R, GASSNER G J. An entropy stable finite volume scheme for the equations of shallow water magnetohydrodynamics[J]. Journal of Scientific Computing, 2016, 67: 514-539. DOI:10.1007/s10915-015-0092-6
doi: 10.1007/s10915-015-0092-6
[7]   KEMM F. Roe-type schemes for shallow water magne-tohydrodynamics with hyperbolic divergence cleaning[J]. Applied Mathematics and Computation, 2016, 272: 385-402. DOI:10.1016/j.amc.2015.05.079
doi: 10.1016/j.amc.2015.05.079
[8]   TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987, 49(179): 91-103. DOI:10.1090/s0025-5718-1987-0890255-3
doi: 10.1090/s0025-5718-1987-0890255-3
[9]   LAX P D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1973: 1-48. doi:10.1137/1.9781611970562.ch1
doi: 10.1137/1.9781611970562.ch1
[10]   ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228 (15): 5410-5436. DOI:10.1016/j.jcp. 2009.04.021
doi: 10.1016/j.jcp. 2009.04.021
[11]   郑素佩, 建芒芒, 封建湖, 等. 保号WENO-AO型中心迎风格式[J]. 计算物理,2022,39(6):677-686. DOI:10.19596/j.cnki.1001-246x-8507 .
ZHENG S P, JIAN M M, FENG J H, et al. Sign preserving WENO-AO-type central upwind schemes[J]. Chinese Journal of Computational Physics, 2022,39(6):677-686. DOI:10.19596/j.cnki.1001-246x-8507 .
doi: 10.19596/j.cnki.1001-246x-8507
[12]   郑素佩, 徐霞, 封建湖, 等. 高阶保号熵稳定格式[J]. 数学物理学报, 2021, 41(5): 1296-1310. DOI:10.3969/j.issn.1003-3998.2021.05.005
ZHENG S P, XU X, FENG J H, et al. High-order sign preserving entropy stable schemes[J]. Acta Mathematica Scientia, 2021, 41(5): 1296-1310. DOI:10.3969/j.issn.1003-3998.2021.05.005
doi: 10.3969/j.issn.1003-3998.2021.05.005
[13]   沈亚玲, 封建湖, 郑素佩, 等. 基于一种新型斜率限制器的理想磁流体方程的高分辨率熵相容格式[J]. 计算物理, 2022, 39(3): 297-308. DOI:10.19596/j.cnki.1001-246x.8405
SHEN Y L, FENG J H, ZHENG S P, et al. High resolution entropy consistent scheme for ideal magne-tohydrodynamics equations based on a new slope limiter[J]. Chinese Journal of Computational Physics, 2022, 39(3): 297-308. DOI:10.19596/j.cnki.1001-246x.8405
doi: 10.19596/j.cnki.1001-246x.8405
[14]   QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids, 1994, 18(6): 555-574. DOI:10.1002/fld.1650180603
doi: 10.1002/fld.1650180603
[15]   DAVID W, KENETH L, POWELL G. Use of a rotated Riemann solver for the two-dimensional Euler equati-ons[J]. Journal of Computational Physics, 1993, 106(2): 201-214. DOI:10.1016/S0021-9991(83)71103-4
doi: 10.1016/S0021-9991(83)71103-4
[16]   NISHIKAWA H, KITAMURA K. Very simple, carbun-cle-free, boundary-layer-resolving, rotated-hybrid Riemann solver[J]. Journal of Computational Physics, 2008, 227(4): 2560-2581. DOI:10.1016/j.jcp.2007.11.003
doi: 10.1016/j.jcp.2007.11.003
[17]   ZHANG F, LIU J, CHEN B S, et al. Evaluation of rotated upwind schemes for contact discontinuity and strong shock[J]. Computers & Fluids, 2016, 134: 11-22. DOI:10.1016/j.compfluid.2016.05.010
doi: 10.1016/j.compfluid.2016.05.010
[18]   贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学和力学, 2021, 42(2): 170-179. DOI:10.21656/1000-0887.410196
JIA D, ZHENG S P. A hybrid scheme of rotational flux for solving 2D Euler equations[J]. Applied Mathematics and Mechanics, 2021, 42(2): 170-179. DOI:10.21656/1000-0887.410196
doi: 10.21656/1000-0887.410196
[19]   郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. DOI:10.21656/1000-0887.420063
ZHENG S P, LI X, ZHAO Q Y, et al. A rotated mixed scheme for solving 2D shallow water equations [J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. DOI:10.21656/1000-0887.420063
doi: 10.21656/1000-0887.420063
[20]   JEFFREY A, TANIUTI A. Non-linear Wave Propagation[M]. New York: Academic Press, 1964: 167-194. DOI:10.1002/zamm.19650450434
doi: 10.1002/zamm.19650450434
[21]   TORO E. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer, 2013: 105-106.
[22]   GOTTLIEB S, KETCHESON D I, SHU C W. High order strong stability preserving time discretizations[J]. Journal of Scientific Computing, 2009, 38(3): 251-289. DOI:10.1007/s10915-008-9239-z
doi: 10.1007/s10915-008-9239-z
[23]   ROE P L. Entropy Conservation Schemes for Euler Equations[R]. Lyon: Talk at HYP,2006.
[24]   SWEBY P K, BAINES M J. On convergence of Roe's scheme for the general non-linear scalar wave equation[J]. Journal of Computational Physics, 1984, 56(1): 135-148. DOI:10.1016/0021-9991(84)90087-1
doi: 10.1016/0021-9991(84)90087-1
[1] Meiling SUN,Shan JIANG. Simulation of multiscale finite element method on graded meshes for two-dimensional singularly perturbed twin boundary layers problems[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 564-569.
[2] Supei ZHENG,Qingyu ZHAO,Jianhu FENG. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 329-335.
[3] Juan LI. A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 60-65.