Please wait a minute...
Journal of Zhejiang University (Science Edition)  2022, Vol. 49 Issue (1): 60-65    DOI: 10.3785/j.issn.1008-9497.2022.01.009
Mathematics and Computer Science     
A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation
Juan LI()
Department of Basis Course, Nanjing Audit University Jinshen College, Nanjing 210023, China
Download: HTML( 5 )   PDF(981KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The higher order convective Cahn-Hilliard type equation is a kind of sixth-order evolution equation with fourth-order nonlinearity term.A linearized finite difference scheme is presented by using Taylor formula.The first time level is a two-layers implicit scheme,while the other time levels are three-layers implicit schemes.In the derivation of the scheme,nonlinear terms are discretized by central difference quotient.A theoretical analysis is carried out by the energy argument and mathematical induction. The uniqueness and convergence of the numerical solution are proved in L2 norm rigorously.The convergence order is two in time and space.Some numerical results are presented to demonstrate the efficiency of the difference scheme.



Key wordshigher order Cahn-Hilliard type equation      linearized difference scheme      uniqueness      convergence      nonlinear problem      linearization     
Received: 01 July 2020      Published: 18 January 2022
CLC:  O 241.82  
Cite this article:

Juan LI. A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation. Journal of Zhejiang University (Science Edition), 2022, 49(1): 60-65.

URL:

https://www.zjujournals.com/sci/EN/Y2022/V49/I1/60


高阶对流Cahn-Hilliard型方程的二阶线性化差分方法

高阶对流Cahn-Hilliard型方程是一类空间六阶且具有四阶非线性项的发展方程。首先,给出了线性化差分格式,其第一时间层为2层隐式差分格式,其余时间层为3层隐式差分格式。其次,在差分格式建立过程中,利用中心差商对四阶非线性项进行离散,证明了差分格式解的唯一性和收敛性,并得到其在时间和空间上的收敛阶均为二阶。最后,通过数值算例,验证了差分格式的有效性。


关键词: 高阶对流Cahn-Hilliard型方程,  线性化差分格式,  唯一性,  收敛性,  非线性问题,  线性化 
NH2hτorder1Hhτorder2
202.451×10-41.8711.510×10-41.859
406.703×10-51.8784.162×10-51.872

80

160

1.824×10-5

4.949×10-6

1.882

/

1.137×10-5

3.113×10-6

1.869

/

Table 1 The errors and temporal convergence orders of the difference scheme in L2 -norm and L-norm when T=5, M=2 000,ε=0.5
MH2hτorder3Hhτorder4
109.914×10-21.8412.245×10-21.855
202.767×10-21.9506.208×10-31.808

40

80

7.160×10-3

1.825×10-3

1.972

/

1.773×10-3

4.559×10-4

1.959

/

Table 2 The errors and spatial convergence orders of the difference scheme in L2 -norm and L-norm when T=5, N=2 000,ε=0.5
[1]   SAVINA T V,GOLOVIN A A,DAVIS S H,et al.Faceting of a growing crystal surface by surface diffusion[J].Physical Review E,2003,67(2):021606. DOI:10.1103/PhysRevE.67.021606
doi: 10.1103/PhysRevE.67.021606
[2]   KORZEC M D,EVANS P L,MüNCH A,et al.Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations[J].SIAM Journal on Applied Mathematics,2008,69(2):348-374. DOI:10.1137/070710949
doi: 10.1137/070710949
[3]   KORZEC M D,RYBKA P.On a higher order convective Cahn-Hilliard type equation[J].SIAM Journal on Applied Mathematics,2012,72(4):1343-1360. DOI:10.1137/110834123
doi: 10.1137/110834123
[4]   WISE S M,WANG C,LOWENGRUB J S.An energy-stable and convergent finite-difference scheme for the phase field crystal equation[J]. SIAM Journal on Numerical Analysis,2009,47 (3):2269-2288. DOI:10.1137/080738143
doi: 10.1137/080738143
[5]   HU Z,WISE S M,WANG C,et al.Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation[J].Journal of Computational Physics,2009,228 (15):5323-5339. DOI:10.1016/j.jcp.2009.04.020
doi: 10.1016/j.jcp.2009.04.020
[6]   GOMEZ H,NOGUEIRA X.An unconditionally energy-stable method for the phase field crystal equation[J].Computer Methods in Applied Mechanics & Engineering,2012,249-252:52-61. DOI:10.1016/j.cma.2012.03.002
doi: 10.1016/j.cma.2012.03.002
[7]   ZHANG Z,MA Y,QIAO Z.An adaptive time-stepping strategy for solving the phase field crystal model[J]. Journal of Computational Physics,2013,249:204-215. DOI:10.1016/j.jcp.2013.04.031
doi: 10.1016/j.jcp.2013.04.031
[8]   YANG X,HAN D. Linearly first- and second-order,unconditionally energy stable schemes for the phase field crystal model[J].Journal of Computational Physics,2017,330:1116-1134. DOI:10.1016/j.jcp. 2016.10.020
doi: 10.1016/j.jcp. 2016.10.020
[9]   CAO H,SUN Z.Two finite difference schemes for the phase field crystal equation[J].Science China Mathematics,2015,58(11):2435-2454. DOI:10.1007/s11425-015-5025-1
doi: 10.1007/s11425-015-5025-1
[10]   李娟.晶体相场方程的线性化Crank-Nicolson格式的误差分析[J].山东大学学报(理学版),2019,54(6):118-126. DOI:10.6040/j.issn.1671-9352.0.2018.146
LI J. Error analysis of a linearized Crank-Nicolson for the phase field crystal equation[J].Journal of Shandong University (Natural Science),2019,54(6):118-126. DOI:10.6040/j.issn.1671-9352.0. 2018.146
doi: 10.6040/j.issn.1671-9352.0. 2018.146
[11]   孙志忠.偏微分方程数值解法[M]. 2版.北京:科学出版社,2012. doi:10.1002/num.21707
SUN Z Z.The Method to Numerical Solutions of Partial Difference Equations[M].2nd ed.Beijing:Science Press,2012. doi:10.1002/num.21707
doi: 10.1002/num.21707
[1] Tao WANG,Yan LI. Approximation properties of q-type Lupas-Kantorovich operators[J]. Journal of Zhejiang University (Science Edition), 2023, 50(5): 533-538.
[2] Hongyan JIN,Gennian SUN,Xingtai ZHANG. Regional differences and convergence of high-quality development of tourism in China[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 495-507.
[3] Xinyu YANG, Yi LU, Panyan SHI, Lizhen ZHOU. The almost convergence of sequence and measurable function[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 131-136.
[4] Yuanpeng ZHANG, Hongtao CHEN, Weina WANG. Nonconvex nonsmooth variational model for Poisson noise removal of gray image[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 160-166.
[5] Ning KANG, Ke JING. Convergence of second derivative of a family of barycentric Hermite rational interpolants[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 324-328.
[6] Jincheng SHI,Shengzhong XIAO. [J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 151-158.
[7] Min REN. Limit properties for branching process affected by communicable diseases in random environments[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 53-59.
[8] Yantao YANG,Jingjing CHEN,Haiyun ZHOU. A weak convergence theorem involving the zero point of quasi-inverse strongly monotone operators with application[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 49-52.
[9] ZHANG Qian, CAI Guanghui. Complete convergence for weighted sums of WOD random variables[J]. Journal of Zhejiang University (Science Edition), 2021, 48(4): 435-439.
[10] ZHU Ping, CHEN Xiaodiao, MA Weiyin, JIANG Nichang. Explicit formulae for progressively computing a real root of the smooth function[J]. Journal of Zhejiang University (Science Edition), 2021, 48(2): 143-150.
[11] SONG Mingzhu, SHAO Jing, LIU Caiyun. Limiting properties of moving average processes for END random variable sequence[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 559-563.
[12] GAO Yunfeng, ZOU Guangyu. Complete moment convergence for moving average processes generated by NSD sequences[J]. Journal of Zhejiang University (Science Edition), 2020, 47(2): 172-177.
[13] ZHAO Zhe, ZHANG Tianye, HUANG Yanhao, ZHENG Wenting, CHEN Wei. Simulation-based visual analysis of power grid operation mode[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 36-44.
[14] ZHANG Qian, CAI Guanghui, ZHENG Yuyan. Complete convergence of WOD random variable sequences.[J]. Journal of Zhejiang University (Science Edition), 2019, 46(4): 412-415.
[15] Guojun LI, Guomin ZHOU, Dongjie CHEN, Zhongshi XU. Learning control for the disturbance system with arbitrary initial state error[J]. Journal of Zhejiang University (Science Edition), 2019, 46(3): 328-332.