Please wait a minute...
Journal of Zhejiang University (Science Edition)  2022, Vol. 49 Issue (2): 151-158    DOI: 10.3785/j.issn.1008-9497.2022.02.003
Mathematics and Computer Science     
Jincheng SHI1(),Shengzhong XIAO2()
1.School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China
2.Scientific Research Department,Guangdong AIB Polytechnic College,Guangzhou 510507,China) Convergence of solutions for Brinkman equations and Darcy equations interacting in porous media
Download: HTML( 13 )   PDF(531KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The convergence of solutions for the Brinkman fluid interfacing with a Darcy fluid in a bounded region in?R3 is studied. We assume that the velocity of fluid is slow and it is governed by the Brinkman equations in Ω1, while in Ω2,the saturated flow satisfies the Darcy equations. With the aid of the maximum of the temperature T and some other a priori bounds, we formulate an energy expression, and the expression satisfies a differential inequality. By integrating, we are able to demonstrate the convergence result for the boundary coefficient.



Key wordsconvergence      Brinkman equations      Darcy equations      boundary coefficient     
Received: 06 January 2021      Published: 22 March 2022
CLC:  O 175.29  
Corresponding Authors: Shengzhong XIAO     E-mail: 0818@163.com;172013444@qq.com
Cite this article:

Jincheng SHI,Shengzhong XIAO. . Journal of Zhejiang University (Science Edition), 2022, 49(2): 151-158.

URL:

https://www.zjujournals.com/sci/EN/Y2022/V49/I2/151


多孔介质中相互作用的Brinkman方程组与Darcy方程组解的收敛性

研究了在R3有界区域内多孔介质中相互作用的Brinkman流体方程组与Darcy流体方程组解的收敛性。假设在Ω1中,流体速度较慢满足Brinkman方程组,而在Ω2中,饱和流体满足Darcy方程组,借助温度T的最大值以及其他界,构造了能量表达式,得到了满足该能量表达式的微分不等式和Brinkman-Darcy流体方程组的解对边界系数的收敛性结果。


关键词: 收敛性,  Brinkman方程组,  Darcy方程组,  边界系数 
[1]   AMES K A, STRAUGHAN B. Non-Standard and Improperly Posed Problems[M]. San Diego: Academic Press, 1997. doi:10.1016/s0076-5392(97)80007-0
doi: 10.1016/s0076-5392(97)80007-0
[2]   STRAUGHAN B. Continuous dependence on the heat source in resonant porous penetrative convection[J]. Studies in Applied Mathematics, 2011, 127(3): 302-314. DOI:10.1111/j.1467-9590.2011.00521.x
doi: 10.1111/j.1467-9590.2011.00521.x
[3]   SCOTT N L. Continuous dependence on boundary reaction terms in a porous medium of Darcy type[J]. Journal of Mathematical Analysis and Applications, 2013, 399(2): 667-675. DOI:10.1016/j. jmaa. 2012.10.054
doi: 10.1016/j. jmaa. 2012.10.054
[4]   SCOTT N L, STRAUGHAN B. Continuous dependence on the reaction terms in porous convection with surface reactions[J]. Quarterly of Applied Mathematics, 2013, 71(3): 501-508. DOI:10.1090/S0033-569X-2013-01289-X
doi: 10.1090/S0033-569X-2013-01289-X
[5]   HARFASH J A. Structural stability for two convection models in a reacting fluid with magnetic field effect[J]. Annales Henri Poincaré, 2014, 15(12): 2441-2465. DOI:10.1007/s00023-013-0307-z
doi: 10.1007/s00023-013-0307-z
[6]   LI Y F, LIN C H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe[J]. Applied Mathematics and Computation, 2014, 244(1): 201-208. doi:10.1016/j.amc.2014.06.082
doi: 10.1016/j.amc.2014.06.082
[7]   CIARLETTA M, STRAUGHAN B, TIBULLO V. Structural stability for a thermal convection model with temperature-dependent solubility[J]. Nonlinear Analysis: Real World Applications, 2015, 22: 34-43. DOI:10.1016/j.nonrwa.2014.07.012
doi: 10.1016/j.nonrwa.2014.07.012
[8]   CHEN W H, LIU Y. Structural stability for a Brinkman-Forchheimer type model with temperature-dependent solubility[J]. Boundary Value Problems, 2016, 2016(55): 1-14. DOI:10.1186/S13661-016-0558-Y
doi: 10.1186/S13661-016-0558-Y
[9]   LIU Y. Continuous dependence for a thermal convection model with temperature-dependent solubility[J]. Applied Mathematics and Computation, 2017, 308: 18-30. DOI:10.1016/j.amc.2017.03.004
doi: 10.1016/j.amc.2017.03.004
[10]   李远飞. 大尺度海洋大气动力学三维黏性原始方程对边界参数的连续依赖性[J]. 吉林大学学报(理学版), 2019, 57(5): 1053-1059. DOI:10.13413/j.cnki.jdxblxb.2019038
LI Y F. Continuous dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics[J]. Journal of Jilin University(Science Edition), 2019, 57(5): 1053-1059. DOI:10.13413/j.cnki.jdxblxb.2019038
doi: 10.13413/j.cnki.jdxblxb.2019038
[11]   李远飞.原始方程组对黏性系数的连续依赖性[J]. 山东大学学报(理学版), 2019, 54(12): 12-23. DOI:10.6040/j.issn.1671-9352.0.2019.539
LI Y F. Continuous dependence on the viscosity coefficient for the primitive equations[J]. Journal of Shandong University(Science Edition), 2019, 54(12): 12-23. DOI:10.6040/j.issn.1671-9352.0.2019.539
doi: 10.6040/j.issn.1671-9352.0.2019.539
[12]   李远飞,郭连红.具有边界反应Brinkman-Forchheimer型多孔介质的结构稳定性[J]. 高校应用数学学报,2019, 34(3): 315-324. DOI:10.13299/j.cnki.amjcu.002084
LI Y F, GUO L H. Structural stability on boundary reaction terms in a porous medium of Brinkman-Forchheimer type[J]. Applied Mathematics-A Journal of Chinese Universities, 2019, 34(3): 315-324. DOI:10.13299/j.cnki.amjcu.002084
doi: 10.13299/j.cnki.amjcu.002084
[13]   CICHO? M, STRAUGHAN B, YANTIR A. On continuous dependence of solutions of dynamic equations[J]. Applied Mathematics and Computation, 2015, 252: 473-483. DOI:10.1016/j.amc.2014.12.047
doi: 10.1016/j.amc.2014.12.047
[14]   MA H, LIU B. Exact controllability and continuous dependence of fractional neutral integro-differential equations with state dependent delay[J]. Acta Mathematica Scientia, 2017, 37(1): 235-258. DOI:10.1016/S0252-9602(16)30128-X
doi: 10.1016/S0252-9602(16)30128-X
[15]   WU H L, REN Y, HU F. Continuous dependence property of BSDE with constraints[J]. Applied Mathematics Letters, 2015, 45: 41-46. DOI:10.1016/j.aml.2015.01.002
doi: 10.1016/j.aml.2015.01.002
[16]   PAYNE L E, STRAUGHAN B. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions[J]. Journal de Mathématiques Pures et Appliqués, 1998, 77(4): 317-354. DOI:10.1016/S0021-7824(98)80102-5
doi: 10.1016/S0021-7824(98)80102-5
[17]   LIU Y, XIAO S Z. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain[J]. Nonlinear Analysis: Real World Applications, 2018,42: 308-333. DOI:10.1016/j.nonrwa.2018.01.007
doi: 10.1016/j.nonrwa.2018.01.007
[18]   LIU Y, XIAO S Z, LIN Y W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain[J]. Mathematics and Computers in Simulation, 2018, 150: 66-82. DOI:10.1016/j.matcom.2018.02.009
doi: 10.1016/j.matcom.2018.02.009
[19]   STRAUGHAN B. Stability and Wave Motion in Porous Media[M]. New York: Springer-Verlag,2008. doi:10.1007/978-0-387-76543-3_4
doi: 10.1007/978-0-387-76543-3_4
[1] Tao WANG,Yan LI. Approximation properties of q-type Lupas-Kantorovich operators[J]. Journal of Zhejiang University (Science Edition), 2023, 50(5): 533-538.
[2] Hongyan JIN,Gennian SUN,Xingtai ZHANG. Regional differences and convergence of high-quality development of tourism in China[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 495-507.
[3] Xinyu YANG,Yi LU,Panyan SHI,Lizhen ZHOU. The almost convergence of sequence and measurable function[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 131-136.
[4] Ning KANG,Ke JING. Convergence of second derivative of a family of barycentric Hermite rational interpolants[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 324-328.
[5] Min REN. Limit properties for branching process affected by communicable diseases in random environments[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 53-59.
[6] Juan LI. A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 60-65.
[7] Yantao YANG,Jingjing CHEN,Haiyun ZHOU. A weak convergence theorem involving the zero point of quasi-inverse strongly monotone operators with application[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 49-52.
[8] ZHANG Qian, CAI Guanghui. Complete convergence for weighted sums of WOD random variables[J]. Journal of Zhejiang University (Science Edition), 2021, 48(4): 435-439.
[9] SHI Jincheng, LI Yuanfei. Structural stability of solutions for the Darcy equations in porous medium[J]. Journal of Zhejiang University (Science Edition), 2021, 48(3): 298-303.
[10] ZHU Ping, CHEN Xiaodiao, MA Weiyin, JIANG Nichang. Explicit formulae for progressively computing a real root of the smooth function[J]. Journal of Zhejiang University (Science Edition), 2021, 48(2): 143-150.
[11] SHI Jincheng, LI Yuanfei. Structural stability of the Forchheimer-Darcy fluid in a bounded domain[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 57-63.
[12] SONG Mingzhu, SHAO Jing, LIU Caiyun. Limiting properties of moving average processes for END random variable sequence[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 559-563.
[13] GAO Yunfeng, ZOU Guangyu. Complete moment convergence for moving average processes generated by NSD sequences[J]. Journal of Zhejiang University (Science Edition), 2020, 47(2): 172-177.
[14] ZHAO Zhe, ZHANG Tianye, HUANG Yanhao, ZHENG Wenting, CHEN Wei. Simulation-based visual analysis of power grid operation mode[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 36-44.
[15] ZHANG Qian, CAI Guanghui, ZHENG Yuyan. Complete convergence of WOD random variable sequences.[J]. Journal of Zhejiang University (Science Edition), 2019, 46(4): 412-415.