Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (5): 539-550    DOI: 10.3785/j.issn.1008-9497.2023.05.004
Mathematics and Computer Science     
Hopf bifurcation of a food chain model with cooperative hunting
Wanqin HAN(),Yao SHI(),Xiongxiong BAO
College of Science,Chang'an University,Xi 'an 710064,China
Download: HTML( 1 )   PDF(3710KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the impact of cooperative behaviors between predators on the dynamic behavior of the food chain system, a top-level predator (which only feeds on the predator population) on the basis of the original cooperative hunting model is introduced, and a food chain model with cooperative hunting is established. The local stability of the equilibrium point is discussed by using the linearization method. By establishing an appropriate Lyapunov function, a sufficient condition for the global stability of the system at the equilibrium point is given. In addition, by using the central manifold reduction theorem, the explicit formulas of the branch periodic solution is studied. Numerical simulations are conducted to verify our theoretical analysis. The results show that when there is no cooperative relationship between predators, the positive equilibrium point is stable. With the increase of cooperative predation parameter α, the system will have a stable limit cycle, and the limit cycle will continue to expand following the increase of cooperative predation parameter α. Moreover, if the predator population density is too large, the system will produce continuous periodic oscillation, that is, the three species i.e. diet, mid-level predator, top-level predator, either coexist in the form of periodic oscillation, or the number of species eventually tends to be stable. Therefore, cooperative hunting is more conducive to maintaining ecological balance.



Key wordsfood chain      cooperative hunting      stability      Hopf bifurcation      numerical simulation     
Received: 15 February 2023      Published: 16 September 2023
CLC:  O 175.26  
Corresponding Authors: Yao SHI     E-mail: hwq190104@126.com;shiyao@chd.edu.cn
Cite this article:

Wanqin HAN,Yao SHI,Xiongxiong BAO. Hopf bifurcation of a food chain model with cooperative hunting. Journal of Zhejiang University (Science Edition), 2023, 50(5): 539-550.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I5/539


具有合作狩猎的食物链模型的Hopf分支

为研究捕食者间合作行为对食物链系统动力学行为的影响,在原有合作捕食模型基础上引入顶层捕食者(仅以捕食者种群为食),建立了具有合作狩猎的食物链模型。运用线性化方法讨论了平衡点的局部稳定性,并通过构造合适的Lyapunov函数,给出了系统全局稳定的充分条件。利用中心流形约简定理导出了分支周期解稳定性的显式公式,并通过数值模拟验证了理论分析结果。结果显示,当捕食者间无合作时,正平衡点为稳定焦点,随着合作捕食参数α的增大,系统出现稳定的极限环且随α的增大不断胀大。说明如果捕食者种群密度过大,系统将产生持续的周期振荡,即食饵、中级捕食者、顶层捕食者要么以周期振荡的形式共存,要么种群数最终趋于稳定。因此,合作狩猎更有利于维护生态平衡。


关键词: 食物链,  合作捕食,  稳定性,  Hopf分支,  数值模拟 
参数取值吸引子对应图序号
k=0.5,σ=0.01,m1=0.01,m2=0.3,α=10E0图1(a)
k=0.5,σ=6,m1=0.6,m2=0.3,α=10Ek图1(b)
k=0.5,σ=0.03,m1=0.05,m2=0,α=0.5E1*图1(c)
k=0.5,σ=1.5,m1=0.6,m2=0,α=3Ei*(i=2,3)图1(d)
k=0.5,σ=1,m1=0.1,m2=0.1,α=1.2E?图1(e)
Table 1 Public parameters and values
Fig.1 Existence of extinction equilibrium, boundary equilibrium, internal equilibrium and coexistence equilibrium points
Fig.2 Stability of equilibrium point
Fig.3 Branch diagram and maximum Lyapunov index of formula (1)
Fig.4 Influence of cooperative predation parameters on the dynamic behavior of formula (1)
[1]   HEINSOHN R G, PACKER C. Complex cooperative strategies in group-territorial African lions[J]. Science, 1995, 269(5228): 1260-1262. DOI:10.1126/science.7652573
doi: 10.1126/science.7652573
[2]   BOESCH C, BOESCH H. Hunting behavior of wild chimpanzees in the Tai National Park[J]. American Journal of Physical Anthropology, 1989, 78(4): 547-573. DOI:10.1002/ajpa.1330780410
doi: 10.1002/ajpa.1330780410
[3]   CREEL S, CREEL N M. Communal hunting and pack size in African wild dogs Lycaon pictus [J]. Animal Behaviour, 1995, 50(5):1325-1339. DOI:10.1016/0003-3472(95)80048-4
doi: 10.1016/0003-3472(95)80048-4
[4]   ALVES M T, HILKER F M. Hunting cooperation and Allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419: 13-22. DOI:10. 1016/j.jtbi.2017.02.002
doi: 10. 1016/j.jtbi.2017.02.002
[5]   ZHANG J, ZHANG W N. Dynamics of a predator-prey model with hunting cooperation and Allee effects in predators[J]. International Journal of Bifurcation and Chaos, 2020, 30(14): 2050199. DOI:10.1142/s0218127420501990
doi: 10.1142/s0218127420501990
[6]   FU S M, ZHANG H S. Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99: 105807. DOI:10.1016/j.cnsns.2021.105807
doi: 10.1016/j.cnsns.2021.105807
[7]   LIN Z G, PEDERSEN M. Stability in a diffusive food-chain model with Michaelis-Menten functional response[J]. Nonlinear Analysis: Theory, Methods and Applications, 2004, 57(3): 421-433. DOI:10. 1016/j.na.2004.02.022
doi: 10. 1016/j.na.2004.02.022
[8]   WEN S, CHEN S H, MEI H H. Positive periodic solution of a more realistic three-species Lotka-Volterra model with delay and density regulation[J]. Chaos, Solitons and Fractals, 2009, 40(5): 2340-2348. DOI:10.1016/j.chaos.2007.10.027
doi: 10.1016/j.chaos.2007.10.027
[9]   SHEN C X, YOU M S. Permanence and extinction of a three-species ratio-dependent food chain model with delay and prey diffusion[J]. Applied Mathematics and Computation, 2010, 217(5): 1825-1830. DOI:10.1016/j.amc.2010.02.037
doi: 10.1016/j.amc.2010.02.037
[10]   CONG P P, FAN M, ZOU X F. Dynamics of a three-species food chain model with fear effect[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99(2):105809. DOI:10.1016/j.cnsns.2021.105809
doi: 10.1016/j.cnsns.2021.105809
[11]   PANDAY P, PAL N, SAMANTA S, et al. Stability and bifurcation analysis of a three-species food chain model with fear[J]. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850009. DOI:10.1142/s0218127418500098
doi: 10.1142/s0218127418500098
[12]   MISRA A K, VERMA M. A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere[J]. Applied Mathematics and Computation, 2013, 219(16): 8595-8609. DOI:10.1016/j.amc.2013.02.058
doi: 10.1016/j.amc.2013.02.058
[13]   XIAO Y N, CHEN L S. Modeling and analysis of a predator-prey model with disease in the prey[J]. Mathematical Biosciences, 2001, 171(1): 59-82. DOI:10.1016/s0025-5564(01)00049-9
doi: 10.1016/s0025-5564(01)00049-9
[14]   BURNSIDE W S, PANTON A W. The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms[M]. Dublin: Hodges Figgis, 1892.
[15]   廖晓昕. 稳定性的理论方法和应用[M]. 武汉:华中科技大学出版社,1999.
LIAO X X. Theoretical Methods and Applications of Stability[M]. Wuhan: Huazhong University of Science and Technology Press, 1999.
[16]   LASALLE J. The Stability of Dynamical Systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976.
[17]   赵叶青,李桂花. 考虑合作狩猎的捕食与被捕食系统理论分析[J]. 黑龙江大学自然科学学报,2019,36(4):431-435. DOI:10.13482/j.issn.1001-7011. 2018.03.206
ZHAO Y Q, LI G H. Theoretical analysis of predator-prey system considering cooperative hunting[J]. Journal of Natural Science of Heilongjiang University, 2019,36(4):431-435. DOI:10.13482/j.issn.1001-7011.2018. 03.206
doi: 10.13482/j.issn.1001-7011.2018. 03.206
[18]   马知恩,周义仓,李承治. 常微分方程定性与稳定性方法[M]. 2版. 北京:科学出版社,2015.
MA Z E, ZHOU Y C, LI C Z. Methods for Qualitative and Stability of Ordinary Differential Equations[M]. 2nd ed. Beijing: Science Press, 2015.
[1] Yupeng LIU,Qian CAO,Xiongxiong BAO. Dynamic analysis of a predator-prey diffusion model with fear effect and modification of Holling-[J]. Journal of Zhejiang University (Science Edition), 2024, 51(2): 186-195.
[2] Jincheng SHI, Shengzhong XIAO. Continuous dependence result for Boussinesq type equations in a porous medium[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 409-415.
[3] Xiaowu LI,Yunrui YANG,Kaikai LIU. Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay[J]. Journal of Zhejiang University (Science Edition), 2023, 50(3): 273-286.
[4] Fang CHEN, Huijun GUO, Yumeng SONG, Hui LOU. Preparation of modified walnut shell char supported Molybdenum carbide catalyst and its application in hydrodeoxidation of corn oil[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 174-184.
[5] Yujuan JIAO. Study on Cartan-Eilenberg VW-Gorenstein complexes[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 657-661.
[6] Meiling SUN,Shan JIANG. Simulation of multiscale finite element method on graded meshes for two-dimensional singularly perturbed twin boundary layers problems[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 564-569.
[7] Fangfang YANG,Zizhen ZHANG. Hopf bifurcation of nonlinear computer virus propagation model with hybrid quarantine strategy[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 570-579.
[8] Yuqian ZHANG,Tailei ZHANG,Wenshan HOU,Xueli SONG. A delayed SIQR epidemic model with media effect and tracking quarantine[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 159-169.
[9] Qiuyan HUANG,Kun LUO,Jianren FAN. Numerical simulation of particle deposition in semicircular ribbed duct[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 112-120.
[10] SHI Jincheng, LI Yuanfei. Structural stability of solutions for the Darcy equations in porous medium[J]. Journal of Zhejiang University (Science Edition), 2021, 48(3): 298-303.
[11] SHI Jincheng, LI Yuanfei. Structural stability of the Forchheimer-Darcy fluid in a bounded domain[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 57-63.
[12] WU Yunxia, ZHAO Dan, CHEN Shasha, ZHANG Ping, YANG Yueping. Study on stability and health of mineralizerd reverse osmosis desalted permeat[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 101-106.
[13] ZHANG Zizhen, CHU Yugui, KUMARI Sangeeta, Ranjit Kumar UPADHYAY. Delay dynamics of worm propagation model with non-linear incidence rates in wireless sensor network[J]. Journal of Zhejiang University (Science Edition), 2019, 46(2): 172-195.
[14] YUE Tian, SONG Xiaoqiu. Some characterizations for the uniform exponential stability of linear skew-product semiflows[J]. Journal of Zhejiang University (Science Edition), 2018, 45(5): 545-548.
[15] ZHANG Yong, YANG Xueling, SHU Yonglu. Dynamical behaviors of a new atmospheric chaos model and its numerical simulation[J]. Journal of Zhejiang University (Science Edition), 2018, 45(1): 18-22.