Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (3): 273-286    DOI: 10.3785/j.issn.1008-9497.2023.03.003
Mathematics and Computer Science     
Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay
Xiaowu LI1(),Yunrui YANG1(),Kaikai LIU2
1.School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China
2.School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China
Download: HTML( 11 )   PDF(670KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The exponential stability of monostable traveling wave solutions of a class of SVIR model is established by using the weighted energy method and continuity method. In particular, the requirement for the initial perturbation need only be uniformly bounded at x=+ but not vanishing.



Key wordsnonlocal diffusion      monostable wave solutions      stability      delay      weighted-energy method     
Received: 11 May 2022      Published: 19 May 2023
CLC:  O 175.26  
Corresponding Authors: Yunrui YANG     E-mail: lixiaowu2020@163.com;lily1979101@163.com
Cite this article:

Xiaowu LI,Yunrui YANG,Kaikai LIU. Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay. Journal of Zhejiang University (Science Edition), 2023, 50(3): 273-286.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I3/273


一类时滞非局部扩散SVIR模型单稳行波解的稳定性

利用加权能量法结合连续性方法建立了一类时滞非局部扩散SVIR模型单稳行波解的指数稳定性。特别地,初始扰动只需在x=+处一致有界而不必趋于0。


关键词: 非局部扩散,  单稳行波解,  稳定性,  时滞,  加权能量法 
[1]   KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London (Series A), 1927, 115(772): 700-721. DOI:10.1098/rspa.1927.0118
doi: 10.1098/rspa.1927.0118
[2]   WANG X S, WANG H Y, WU J H. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation[J]. Discrete & Continuous Dynamical Systems, 2015, 32(9): 3303-3324. DOI:10.3934/dcds.2012.32.3303
doi: 10.3934/dcds.2012.32.3303
[3]   LUO Y T, TANG S T, TENG Z D, et al. Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence[J]. Nonlinear Analysis: Real World Applications, 2019, 50: 365-385. DOI:10.1016/j.nonrwa.2019.05.008
doi: 10.1016/j.nonrwa.2019.05.008
[4]   LI Y, LI W T, YANG Y R. Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model[J]. Journal of Mathematical Physics, 2016, 57(4): 041504. DOI:10.1063/1. 4947106
doi: 10.1063/1. 4947106
[5]   LI W T, YANG F Y. Traveling waves for a nonlocal dispersal SIR model with standard incidence[J]. Journal of Integral Equations and Applications, 2014, 26(2): 243-273. DOI:10.1216/JIE-2014-26-2-243
doi: 10.1216/JIE-2014-26-2-243
[6]   KUNIYA T, WANG J L. Global dynamics of an SIR epidemic model with nonlocal diffusion[J]. Nonlinear Analysis: Real World Applications, 2018, 43: 262-282. DOI:10.1016/j.nonrwa.2018.03.001
doi: 10.1016/j.nonrwa.2018.03.001
[7]   LI Y, LI W T, YANG F Y. Traveling waves for a nonlocal dispersal SIR model with delay and external supplies[J]. Applied Mathematics and Computation, 2014, 247: 723-740. DOI:10.1016/j.amc.2014.09.072
doi: 10.1016/j.amc.2014.09.072
[8]   WANG J B, LI W T, YANG F Y. Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 27(1-3): 136-152. DOI:10.1016/j.cnsns. 2015.03.005
doi: 10.1016/j.cnsns. 2015.03.005
[9]   LI Y, LI W T, ZHANG G B. Stability and uniqueness of traveling waves of a non-local dispersal SIR epidemic model[J]. Dynamics of Partial Differential Equations, 2017, 14(2): 87-123. DOI:10.4310/DPDE.2017.v14.n2.a1
doi: 10.4310/DPDE.2017.v14.n2.a1
[10]   WU W X, ZHANG L, TENG Z D. Wave propagation in a nonlocal dispersal SIR epidemic model with nonlinear incidence and nonlocal distributed delays[J]. Journal of Mathematical Physics, 2020, 61(6): 061512. DOI:10.1063/1. 5142274
doi: 10.1063/1. 5142274
[11]   ZHANG C, GAO J G, SUN H G, et al. Dynamics of a reaction-diffusion SVIR model in a spatial heterogeneous environment[J]. Physica A: Statistical Mechanics and its Applications, 2019, 533: 122049. DOI:10.1016/j.physa.2019.122049
doi: 10.1016/j.physa.2019.122049
[12]   MEI M, SO J W H, LI M Y, et al. Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2004, 134(3): 579-594. DOI:10.1017/S03082105 00003358
doi: 10.1017/S03082105 00003358
[13]   MEI M, SO J W H. Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2008, 138(3): 551-568. DOI:10.1017/S0308210 506000333
doi: 10.1017/S0308210 506000333
[14]   LIN C K, LIN C T, LIN Y P, et al. Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation[J]. SIAM Journal on Mathematical Analysis, 2014, 46(2): 1053-1084. DOI:10.1137/120904391
doi: 10.1137/120904391
[15]   CHERN I L, MEI M, YANG X F, et al. Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay[J]. Journal of Differential Equations, 2015, 259(4): 1503-1541. DOI:10.1016/j.jde.2015.03.003
doi: 10.1016/j.jde.2015.03.003
[16]   MEI M, ZHANG K J, ZHANG Q F. Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equations[J]. International Journal of Numerical Analysis & Modeling, 2019, 16(3): 375-397.
[17]   ZHANG G B. Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay[J]. Journal of Mathematical Analysis and Applications, 2019, 475(1): 605-627. DOI:10.1016/j.jmaa.2019.02.058
doi: 10.1016/j.jmaa.2019.02.058
[18]   MA Z H, YUAN R, WANG Y, et al. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system[J]. Communications on Pure & Applied Analysis, 2019, 18(4): 2069-2092. DOI:10.3934/cpaa.2019093
doi: 10.3934/cpaa.2019093
[19]   SU S, ZHANG G B. Global stability of traveling waves for delay reaction-diffusion systems without quasi-monotonicity[J]. Electronic Journal of Differential Equations, 2020, 2020(46): 1-18.
[20]   ZHANG R, LIU S Q. Traveling waves for SVIR epidemic model with nonlocal dispersal[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. DOI:10.3934/mbe.2019079
doi: 10.3934/mbe.2019079
[21]   MEI M. Global smooth solutions of the Cauchy problem for higher-dimensional generalized pulse transmission equations[J]. Acta Mathematicae Applicatae Sinica, 1991, 14(4): 450-461. DOI:10. 12387/C1991061
doi: 10. 12387/C1991061
[22]   IGNAT L I, ROSSI J D. A nonlocal convection-diffusion equation[J]. Journal of Functional Analysis, 2007, 251(2): 399-437. DOI:10.1016/j.jfa.2007.07.013
doi: 10.1016/j.jfa.2007.07.013
[1] Wanqin HAN,Yao SHI,Xiongxiong BAO. Hopf bifurcation of a food chain model with cooperative hunting[J]. Journal of Zhejiang University (Science Edition), 2023, 50(5): 539-550.
[2] Jincheng SHI,Shengzhong XIAO. Continuous dependence result for Boussinesq type equations in a porous medium[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 409-415.
[3] Fang CHEN,Huijun GUO,Yumeng SONG,Hui LOU. Preparation of modified walnut shell char supported Molybdenum carbide catalyst and its application in hydrodeoxidation of corn oil[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 174-184.
[4] Yujuan JIAO. Study on Cartan-Eilenberg VW-Gorenstein complexes[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 657-661.
[5] Meiling SUN,Shan JIANG. Simulation of multiscale finite element method on graded meshes for two-dimensional singularly perturbed twin boundary layers problems[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 564-569.
[6] Fangfang YANG,Zizhen ZHANG. Hopf bifurcation of nonlinear computer virus propagation model with hybrid quarantine strategy[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 570-579.
[7] Yuqian ZHANG,Tailei ZHANG,Wenshan HOU,Xueli SONG. A delayed SIQR epidemic model with media effect and tracking quarantine[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 159-169.
[8] Ping ZHANG,Guijiang QIN,Jiashan YANG. Existence of nonoscillatory solutions of higher order nonlinear neutral difference equations with positive and negative coefficients and multiple variable delays[J]. Journal of Zhejiang University (Science Edition), 2022, 49(1): 41-48.
[9] SHI Jincheng, LI Yuanfei. Structural stability of solutions for the Darcy equations in porous medium[J]. Journal of Zhejiang University (Science Edition), 2021, 48(3): 298-303.
[10] SHI Jincheng, LI Yuanfei. Structural stability of the Forchheimer-Darcy fluid in a bounded domain[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 57-63.
[11] LI Jimeng, YANG Jiashan. Study on the dynamical properties of second-order nonautonomous delay dynamic equations with nonpositive neutral coefficients[J]. Journal of Zhejiang University (Science Edition), 2020, 47(4): 442-447.
[12] QIN Guijiang, LIU Yuzhou, YANG Jiashan. Oscillation of higher order differential equations with positive and negative coefficients and multiple variable delays[J]. Journal of Zhejiang University (Science Edition), 2020, 47(2): 159-166.
[13] LI Jimeng, YANG Jiashan. Oscillation analysis of second-order quasilinear damped dynamic equations on time scales[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 72-76.
[14] WU Yunxia, ZHAO Dan, CHEN Shasha, ZHANG Ping, YANG Yueping. Study on stability and health of mineralizerd reverse osmosis desalted permeat[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 101-106.
[15] LI Jimeng, YANG Jiashan. Sufficient conditions of oscillation for certain second-order functional dynamic equations on time scales[J]. Journal of Zhejiang University (Science Edition), 2019, 46(4): 405-411.