Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (2): 174-184    DOI: 10.3785/j.issn.1008-9497.2023.02.007
Chemistry     
Preparation of modified walnut shell char supported Molybdenum carbide catalyst and its application in hydrodeoxidation of corn oil
Fang CHEN,Huijun GUO,Yumeng SONG,Hui LOU()
Department of Chemistry,Zhejiang University,Hangzhou 310028,China
Download: HTML( 4 )   PDF(5114KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Converting renewable resources such as walnut shells into energy or chemical products is one of the targets for peak carbon dioxide emission and carbon neutrality. Walnut shell char is a solid byproduct of the rapid pyrolysis of walnut shells to create biological oil. Due to its limited porosity and low specific surface area, it is difficult to be used directly as carbon material. FeCl3 was utilized to activate carbon extracted from walnut shells, whereas KOH was used as a reference. Through SEM, TEM, BET, Raman, N2-adsorption, and other series of characterization, it was found that activation improves the degree of graphitization compared to that without activation. The specific surface area increased from 1.6 cm2·g-1 to 377 cm2·g-1 and the pore volume increased from 0.004 6 cm3·g-1 to 0.074 cm3·g-1 when the FeCl3/WSC mass ratio was 10%. The structure of pores was abundant, and the carbon yield (61.2%) was higher than that by using the KOH activation method (35.8%). As a support for the corn oil hydrodeoxidation reaction, carbon derived from walnut shells was treated with FeCl3 to produce the molybdenum carbide catalyst. The corn oil conversion rate and the yield of hydrocarbon were 89.7% and 87.2%, respectively. After 8 cycles, neither the corn oil conversion rate nor the yield of hydrocarbon decreased, and the catalyst remained stable. This method of modifying FeCl3 has the advantages of cost-effectiveness, high efficiency, and environmental friendliness, as well as the potential for extensive use.



Key wordswalnut shell char      activation with FeCl3      catalytic activity      stability     
Received: 10 December 2021      Published: 21 March 2023
CLC:  O 643  
Corresponding Authors: Hui LOU     E-mail: hx215@zju.edu.cn
Cite this article:

Fang CHEN, Huijun GUO, Yumeng SONG, Hui LOU. Preparation of modified walnut shell char supported Molybdenum carbide catalyst and its application in hydrodeoxidation of corn oil. Journal of Zhejiang University (Science Edition), 2023, 50(2): 174-184.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I2/174


改性核桃壳炭负载的碳化钼催化剂的制备及其在玉米油加氢脱氧反应中的应用

将核桃壳等可再生资源转化为能源或化工产品,是双碳目标的指引方向之一。核桃壳炭是核桃壳快速热解制备生物油的固体残渣,由于其低比表面积和较差的孔隙率,难以直接使用。用FeCl3活化剂对核桃壳炭进行改性,并将其与常用的KOH改性做对比,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、BET方法、拉曼光谱、N2等温吸脱附曲线等系列表征,发现相较核桃壳炭,改性核桃壳炭的石墨化程度有所提高,其中,用FeCl3改性的核桃壳炭的比表面积由1.6 cm2·g-1提高至377 cm2·g-1,孔容由0.004 6 cm3·g-1提高至0.074 cm3·g-1,呈现丰富的海绵状孔结构,且收率(61.2%)高于用KOH改性的核桃壳炭(35.8%)。将用FeCl3改性的核桃壳炭负载的碳化钼催化剂用于玉米油加氢脱氧反应,玉米油转化率和烃类产率分别达89.7%和87.2%,循环8次后,玉米油转化率和烃类收率均无明显下降,具有良好的稳定性。因此用FeCl3改性的核桃壳炭经济、高效和环境友好,有一定的推广应用价值。


关键词: 核桃壳炭,  FeCl3改性,  催化活性,  稳定性 
Fig.1 SEM and TEM images of WSC
Fig.2 XRD spectrums of WSC
Fig.3 N2 adsorption-desorption isotherms and pore size distributions of WSC
样品

比表面积/

(m2·g-1

孔容/(cm3·g-1峰位/cm-1aID/IGb元素组成/%c

收率/

%e

DGCHN其他d
WSC-O1.60.004 61 3421 5940.9673.92.90.422.8-
WSC-C7.60.007 11 3411 5940.9476.32.40.420.971.5
WSC-K1 5150.881 3401 5960.8881.21.90.616.335.8
WSC-13770.0741 3421 5960.8177.51.81.119.665.4
WSC-104180.131 3391 5960.7481.01.41.216.461.2
WSC-504270.171 3521 5850.6386.01.21.411.450.7
ACf8830.271 3491 5790.9254.91.50.543.1-
Table 1 Textural parameters, Raman spectra data, element contents, and yield of differently activated WSC
催化剂

比表面积/

(m2·g-1

孔容/(cm3·g-1峰位/cm-1ID/IG转化率/%a收率/%b
DG
Mo2C/WSC-12310.0361 3471 5940.7875.167.6
Mo2C/WSC-103050.0921 3431 5950.7189.787.2
Mo2C/WSC-503240.111 3481 5870.6291.188.3
Mo2C/WSC-K7860.311 3421 5940.8668.466.3
Mo2C/AC4100.141 3511 5820.8869.459.1
Table 2 Textual parameters, Raman spectra data and reaction results of supported Mo2C catalysts
Fig.4 XRD patterns of modified WSC supported Mo2C catalysts
Fig.5 XPS spectrum of Mo2C/WSC-10
Fig.6 Mo 3d and C 1s XPS spectrum of modified WSC supported Mo2C catalysts
催化剂结合能/eV (原子百分比/%)
Mo2+Mo2+~4+Mo4+Mo4+~6+Mo6+
Mo2C/WSC-1228.29 (11.3)228.68 (18.5)229.42 (22.7)231.17 (10.1)232.41 (37.4)
Mo2C/WSC-10228.38 (17.5)228.69 (16.3)229.38 (25.7)231.19 (16.8)232.41 (23.7)
Mo2C/WSC-50228.42 (21.8)228.70 (14.8)229.28 (23.6)231.20 (18.1)232.41 (21.7)
Mo2C/WSC-K228.17 (10.7)228.70 (12.3)229.40 (23.6)231.19 (18.3)232.39 (35.1)
Table 3 XPS results of the Mo 3d spectra of different catalysts
催化剂结合能/eV (原子百分比/%)
C—Mo平面内C—C缺键位C—CC—OC=O
Mo2C/WSC-1284.20 (10.3)284.59 (41.4)285.52 (28.5)286.70 (11.5)288.68 (8.3)
Mo2C/WSC-10284.14 (11.3)284.59 (53.2)285.48 (18.6)286.69 (10.1)288.70 (6.8)
Mo2C/WSC-50284.12 (12.4)284.60 (63.7)285.51 (11.5)286.71 (6.5)288.65 (5.9)
Mo2C/WSC-K284.22 (9.1)284.61 (56.3)285.50 (15.8)286.69 (9.6)288.69 (9.2)
Table 4 XPS results of the C 1s spectra of different catalysts.
Fig.7 Reaction results of Mo2C catalysts supported on different carriers
Fig.8 Cycling tests of Mo2C/WSC-10 and Mo2C/WSC-K
Fig.9 SEM images of Mo2C/WSC-10 and Mo2C/WSC-K before and after the recycling
Fig.10 XRD patterns of Mo2C/WSC-10 and Mo2C/WSC-K before and after the recycling
[1]   MOHAN D, PITTMAN JR C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3) : 848-889. DOI:10.1021/ef0502397
doi: 10.1021/ef0502397
[2]   KIM S K, YOON D, LEE S C, et al. Mo2C/Graphene nanocomposite as a hydrodeoxygenation catalyst for the production of diesel range hydrocarbons[J]. ACS Catalysis, 2015, 5(6): 3292-3303. DOI:10.1021/acscatal.5b00335
doi: 10.1021/acscatal.5b00335
[3]   QIN Y, HE L L, DUAN J Z, et al. Carbon-supported molybdenum-based catalysts for the hydrodeoxygenation of maize oil[J]. ChemCatChem, 2014, 6(9): 2698-2705. DOI:10.1002/cctc. 201402035
doi: 10.1002/cctc. 201402035
[4]   QIN Y, WANG C, SUN X, et al. Defects on activated carbon determine the dispersion of active components and thus the simultaneous removal efficiency of SO2, NO x and Hg0 [J]. Fuel, 2021, 293(1): 120391-120399. DOI:10.1016/j.fuel.2021. 120391
doi: 10.1016/j.fuel.2021. 120391
[5]   LU M H, LU F W, ZHU J, et al. Hydrodeoxygenation of methyl stearate as a model compound over Mo2C supported on mesoporous carbon[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115: 251-262. DOI:10.1007/s11144-015-0839-y
doi: 10.1007/s11144-015-0839-y
[6]   HAN J X, DUAN J Z, CHEN P, et al. Molybdenum carbide-catalyzed conversion of renewable oils into diesel-like hydrocarbons[J]. Advanced Synthesis & Catalysis, 2011, 353(14/15): 2577-2583. DOI:10. 1002/adsc.201100217
doi: 10. 1002/adsc.201100217
[7]   HUIDOBRO A, PASTOR A C, RODRÍGUEZ-REINOSO F. Preparation of activated carbon cloth from viscous rayon: Part IV chemical activation[J]. Carbon, 2001, 39(3): 389-398. DOI:10.1016/S0008-6223(00)00131-7
doi: 10.1016/S0008-6223(00)00131-7
[8]   EL-HENDAWY A N A. Surface and adsorptive properties of carbons prepared from biomass[J]. Applied Surface Science, 2005, 252(2): 287-295. DOI:10.1016/j.apsusc.2004.11.092
doi: 10.1016/j.apsusc.2004.11.092
[9]   OLIVEIRA L C A, PEREIRA E, GUIMARAES I R, et al. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents[J]. Journal of Hazardous Materials, 2009, 165(1-3): 87-94. DOI:10.1016/j.jhazmat.2008. 09.064
doi: 10.1016/j.jhazmat.2008. 09.064
[10]   ZHAO C Q, MA J G, LI Z Y, et al. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants[J]. RSC Advances, 2020, 10(9): 5066-5076. DOI:10.1039/c9ra09208k
doi: 10.1039/c9ra09208k
[11]   WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. DOI:10.1039/C2JM34066F
doi: 10.1039/C2JM34066F
[12]   GRATUITO M K B, PANYATHANMAPORN T, CHUMNANKLANG R A, et al. Production of activated carbon from coconut shell: Optimization using response surface methodology[J]. Bioresource Technology, 2008, 99(11): 4887-4895. DOI:10. 1016/j.biortech.2007.09.042
doi: 10. 1016/j.biortech.2007.09.042
[13]   KOWALCZYK Z, SENTEK J, JODZIS S, et al. An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon[J]. Catalysis Letters, 1997, 45: 65-72. DOI:10.1023/A:1018970318628
doi: 10.1023/A:1018970318628
[14]   LIANG C H, WEI Z B, XIN Q, et al. Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds[J]. Applied Catalysis A: General, 2001, 28(1/2): 193-201. DOI:10.1016/S0926-860X(00)00713-4
doi: 10.1016/S0926-860X(00)00713-4
[15]   DING C, WEI W L, SUN H J, et al. Reduced graphene oxide supported chiral Ni particles as magnetically reusable and enantioselective catalyst for asymmetric hydrogenation[J]. Carbon, 2014, 79: 615-622. DOI:10.1016/j.carbon.2014.08.022
doi: 10.1016/j.carbon.2014.08.022
[16]   OYAMA S T. Introduction to the Chemistry of Transition Metal Carbides and Nitrides[M]. Dordrecht: Springer Netherlands, 1996: 1-27. doi:10.1007/978-94-009-1565-7_1
doi: 10.1007/978-94-009-1565-7_1
[17]   MA Y F, GUAN G Q, HAO X G, et al. Molybdenum carbide as alternative catalyst for hydrogen production: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1101-1129. DOI:10.1016/j.rser.2016.11.092
doi: 10.1016/j.rser.2016.11.092
[18]   LU Q, ZHOU M X, LI W T, et al. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study[J]. Catalysis Today, 2018, 35: 169-179. DOI:10.1016/j.cattod.2017.08.029
doi: 10.1016/j.cattod.2017.08.029
[19]   JIN Y Z, KIM Y J, GAO C, et al. High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery[J]. Carbon, 2006, 44(4): 724-729. DOI:10.1016/j.carbon.2005.09.018
doi: 10.1016/j.carbon.2005.09.018
[20]   WILLIAMS P T, REED A R. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste[J]. Biomass and Bioenergy, 2006, 30(2): 144-152. DOI:10.1016/j.biombioe.2005.11.006
doi: 10.1016/j.biombioe.2005.11.006
[21]   BALAT M. An overview of the properties and applications of biomass pyrolysis oils[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(7): 674-689. DOI:10.1080/15567030903228914
doi: 10.1080/15567030903228914
[22]   FU P, YI W M, BAI X Y, et al. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues[J]. Bioresource Technology, 2011, 102(17): 8211-8219. DOI:10.1016/j.biortech.2011.05.083
doi: 10.1016/j.biortech.2011.05.083
[23]   ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2013, 128: 593-597. DOI:10.1016/j.biortech.2012.10.150
doi: 10.1016/j.biortech.2012.10.150
[24]   CHENG X, WANG B. Influence of organic composition of biomass waste on biochar yield, calorific value, and specific surface area[J]. Journal of Renewable and Sustainable Energy, 2018, 10(1): 013109. DOI:10.1063/1.5009093
doi: 10.1063/1.5009093
[25]   SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11/12): 1469-1482. DOI:10.1016/j.fuel.2003.11.015
doi: 10.1016/j.fuel.2003.11.015
[26]   OTOWA T, TANIBATA R, ITOH M. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon[J]. Gas Separation & Purification, 1993, 7(4): 241-245. DOI:10.1016/0950-4214(93)80024-Q
doi: 10.1016/0950-4214(93)80024-Q
[27]   BAKLANOVA O N, VASILEVICH A V, LAVRENOV A V, et al. Molybdenum carbide synthesized by mechanical activation an inert medium[J]. Journal of Alloys and Compounds, 2017, 698: 1018-1027. DOI:10.1016/j.jallcom.2016.12.186
doi: 10.1016/j.jallcom.2016.12.186
[28]   LIANG C H, YING P L, LI CAN. Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material[J]. Chemistry of Materials, 2002, 14(7): 3148-3151. DOI:10.1021/cm020202p
doi: 10.1021/cm020202p
[29]   MORDENTI D, BRODZKI D, DJEGA-MARIADASSOU G. New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material[J]. Journal of Solid State Chemistry, 1998, 141(1): 114-120. DOI:10.1006/jssc.1998.7925
doi: 10.1006/jssc.1998.7925
[30]   SHEN Y F. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications[J]. Journal of Materials Chemistry A, 2015, 3(25): 13114-13188. DOI:10. 1039/C5TA01228G
doi: 10. 1039/C5TA01228G
[31]   WANG R H, YANG J, SHI K Y, et al. Single-step pyrolytic preparation of Mo2C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells[J]. Rsc Advances, 2013, 3(14): 4771-4777. DOI:10.1039/C3RA23391J
doi: 10.1039/C3RA23391J
[32]   BARTHOS R, SZÉCHENYI A, SOLYMOSI F. Efficient H2 production from ethanol over Mo2C/C nanotube catalyst[J]. Catalysis Letters, 2008, 120: 161-165. DOI:10.1007/s10562-007-9265-8
doi: 10.1007/s10562-007-9265-8
[33]   IZHAR S, KANESUGI H, TOMINAGA H, et al. Cobalt molybdenum carbides: Surface properties and reactivity for methane decomposition[J]. Applied Catalysis A: General, 2007, 317(1): 82-90. DOI:10.1016/j.apcata.2006.10.013
doi: 10.1016/j.apcata.2006.10.013
[34]   LAUSCHE A C, SCHAIDLE J A, THOMPSON L T, et al. Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: Methanol steam reforming[J]. Applied Catalysis A: General, 2011, 401(1/2): 29-36. DOI:10.1016/j.apcata.2011.04.037
doi: 10.1016/j.apcata.2011.04.037
[35]   SHIMODA M, HIRATA T, YAGISAWA K, et al. Deconvolution of Mo 3D X-ray photoemission spectra γ-Mo4O11: Agreement with prediction from bond length-bond strength relationships[J]. Journal of Materials Science Letters, 1989, 8: 1089-1091. DOI:10.1007/BF01730497
doi: 10.1007/BF01730497
[36]   WEI Z B Z, GRANGE P, DELMON B. XPS and XRD studies of fresh and sulfided Mo2N[J]. Applied Surface Science, 1998, 135(1-4): 107-114. DOI:10. 1016/S0169-4332(98)00267-0
doi: 10. 1016/S0169-4332(98)00267-0
[37]   GUO H J, SONG Y M, CHEN P, et al. Effects of graphitization of carbon nanospheres on hydrodeoxygenation activity of molybdenum carbide[J]. Catalysis Science & Technology, 2018, 8(16): 4199-4208. DOI:10.1039/C8CY01136B
doi: 10.1039/C8CY01136B
[38]   WANG Y Y, LING L L, JIANG H. Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni-Mo2C catalyst obtained from biomass[J]. Green Chemistry, 2016, 14: 4032-4041. DOI:10.1039/C6GC00247A
doi: 10.1039/C6GC00247A
[1] Wanqin HAN, Yao SHI, Xiongxiong BAO. Hopf bifurcation of a food chain model with cooperative hunting[J]. Journal of Zhejiang University (Science Edition), 2023, 50(5): 539-550.
[2] Jincheng SHI, Shengzhong XIAO. Continuous dependence result for Boussinesq type equations in a porous medium[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 409-415.
[3] Xiaowu LI,Yunrui YANG,Kaikai LIU. Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay[J]. Journal of Zhejiang University (Science Edition), 2023, 50(3): 273-286.
[4] Yujuan JIAO. Study on Cartan-Eilenberg VW-Gorenstein complexes[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 657-661.
[5] Meiling SUN,Shan JIANG. Simulation of multiscale finite element method on graded meshes for two-dimensional singularly perturbed twin boundary layers problems[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 564-569.
[6] Yuqian ZHANG,Tailei ZHANG,Wenshan HOU,Xueli SONG. A delayed SIQR epidemic model with media effect and tracking quarantine[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 159-169.
[7] SHI Jincheng, LI Yuanfei. Structural stability of solutions for the Darcy equations in porous medium[J]. Journal of Zhejiang University (Science Edition), 2021, 48(3): 298-303.
[8] SHI Jincheng, LI Yuanfei. Structural stability of the Forchheimer-Darcy fluid in a bounded domain[J]. Journal of Zhejiang University (Science Edition), 2021, 48(1): 57-63.
[9] WU Yunxia, ZHAO Dan, CHEN Shasha, ZHANG Ping, YANG Yueping. Study on stability and health of mineralizerd reverse osmosis desalted permeat[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 101-106.
[10] ZHANG Zizhen, CHU Yugui, KUMARI Sangeeta, Ranjit Kumar UPADHYAY. Delay dynamics of worm propagation model with non-linear incidence rates in wireless sensor network[J]. Journal of Zhejiang University (Science Edition), 2019, 46(2): 172-195.
[11] YUE Tian, SONG Xiaoqiu. Some characterizations for the uniform exponential stability of linear skew-product semiflows[J]. Journal of Zhejiang University (Science Edition), 2018, 45(5): 545-548.
[12] ZHANG Zizhen, BI Dianjie, ZHAO Tao. Delay induced Hopf bifurcation in a worm propagation model with partial immunization[J]. Journal of Zhejiang University (Science Edition), 2016, 43(3): 279-285.
[13] YUE Tian, SONG Xiaoqiu. Criteria for the existence of nonuniform exponential instability of skew-evolution semiflows in Banach spaces[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 181-183.
[14] LUO Yao -zhi. Geometrical stability analysis of cable- strut tensile structures [J]. Journal of Zhejiang University (Science Edition), 2000, 27(6): 608-611.
[15] WU Biao. A numerical method for computing the solidification front in a cooling model. [J]. Journal of Zhejiang University (Science Edition), 2000, 27(1): 42-46.