Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (4): 472-482    DOI: 10.3785/j.issn.1008-9497.2023.04.011
Chemistry     
The study of Cu-based catalysts by ball-milling for ethyl acetate catalytic combustion
Han CHEN,Yuhang YE,Qing WANG,Yuchuan YE,Yue JIANG,Dong PENG,Jing XU,Shaohong ZANG,Liuye MO()
National Engineering Research Center for Marine Aquaculture,Zhejiang Ocean University,Zhoushan 316022,Zhejiang Province,China
Download: HTML( 8 )   PDF(4738KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The massive emission of VOCs has caused serious harm to the environment. Catalytic combustion is an efficient way of eliminating VOCs.However,how to prepare catalysts for VOCs elimination with simple and eco-friendly methods is still a big challenge. In our study, supported Cu-based catalysts for catalytic combustion of ethyl acetate (EA) were prepared using the ball-milling method with CeO2, Al2O3, La2O3 and ZrO2 and their corresponding hydroxides as support precursors. The prepared catalysts were characterized by XRD, TEM, XPS and H2-TPR. The results show that the catalysts with hydroxides as support precursors have better reduction performance, higher content of highly dispersed CuO on the surface, and better catalytic combustion performance of ethyl acetate, except for the catalyst prepared with aluminum hydroxide precursor catalyst. Except for the 10%-Cu-Al(AlH), one of the main reasons that the catalytic activities of the 10%-Cu-YH is that the former forms smaller nanocomposites. In addition, higher ratio of Oads/Olatt isalso ascribed to higher catalytic performance of 10%-Cu-CeH than the 10%-Cu-Ce. Among them, 10%-Cu-CeH (T50= 214 ℃, T95= 238 ℃) and 10%-Cu-ZrH (T50= 217 ℃,T95= 239 ℃) prepared with Ce(OH)4 and Zr(OH)4 as support precursors catalyst has the best performance in the catalytic combustion of EA. The above results provide a new idea for the design and preparation of supported non-precious metal catalysts for the catalytic combustion of VOCs.



Key wordsball milling      Cu-based catalyst      ethyl acetate (EA)      VOCs      catalytic combustion     
Received: 31 October 2022      Published: 17 July 2023
CLC:  O 643.3  
Corresponding Authors: Liuye MO     E-mail: liuyemo@zjou.edu.cn
Cite this article:

Han CHEN, Yuhang YE, Qing WANG, Yuchuan YE, Yue JIANG, Dong PENG, Jing XU, Shaohong ZANG, Liuye MO. The study of Cu-based catalysts by ball-milling for ethyl acetate catalytic combustion. Journal of Zhejiang University (Science Edition), 2023, 50(4): 472-482.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I4/472


球磨法制备的Cu基催化剂应用于乙酸乙酯催化燃烧反应的研究

挥发性有机废气(volatile organic compounds,VOCs)的大量排放对环境造成了严重危害,催化燃烧是去除VOCs的有效方法之一。使用简单且环保的催化剂制备方法一直是催化燃烧中催化剂研究的重点与难点之一。以CeO2,Al2O3,La2O3和ZrO2等氧化物以及相应的氢氧化物为载体前驱体,采用球磨法制备了一系列负载型Cu基催化剂,比较了不同氧化物和相应氢氧化物载体前驱体对乙酸乙酯(ethyl acetate,EA)催化燃烧性能的影响,并用XRD、TEM、XPS和H2-TPR等对催化剂进行了表征。结果表明,除Al(OH)3外,以氢氧化物为载体前驱体的催化剂还原性能更好、表面高分散CuO相对质量分数更高、EA催化燃烧的性能更优。除10%-Cu-Al(AlH)催化剂外,10%-Cu-YH比10%-Cu-Y具有更高催化活性的原因之一是前者形成了更小尺寸的纳米复合物。此外,催化剂的活性与催化剂表面的氧物种比例(Oads/Olatt)呈正相关。在所制备的Cu基催化剂中,以Ce(OH)4和Zr(OH)4为载体前驱体制备的10%-Cu-CeH(T50=214 ℃,T95=238 ℃)和10%-Cu-ZrH(T50=217 ℃,T95=239 ℃)催化剂在EA催化燃烧中的性能更好,具有潜在的工业应用价值。研究结果可为VOCs催化燃烧的负载型非贵金属催化剂设计和制备提供参考。


关键词: 球磨法,  Cu基催化剂,  乙酸乙酯,  VOCs,  催化燃烧 
Fig.1 XRD patterns of 10%-Cu-Y(YH) catalysts
催化剂载体晶粒尺寸/nm催化剂载体晶粒尺寸/nm
10%-Cu-Ce22.610%-Cu-CeH6.7
10%-Cu-Al5.710%-Cu-AlH
10%-Cu-La7.610%-Cu-LaH5.3
10%-Cu-Zr26.110%-Cu-ZrH5.7
Table 1 Crystalline sizes of supports over 10%-Cu-Y(YH) catalysts
Fig.2 HRTEM images and CuO particle size distributions of 10%-Cu-Ce and 10%-Cu-CeH
Fig.3 XPS spectra of the 10%-Cu-Y(YH) catalysts
催化剂表面原子相对质量分数/%
CuOY(YH)中金属元素
10%-Cu-Ce9.8869.8520.27
10%-Cu-Al2.0457.8740.09
10%-Cu-La4.4275.1520.43
10%-Cu-Zr7.5269.7722.71
10%-Cu-CeH15.2972.2514.56
10%-Cu-AlH1.6561.6136.74
10%-Cu-LaH5.1174.3320.55
10%-Cu-ZrH7.7569.7022.55
Table 2 Elements distributions over the 10%-Cu-Y and 10%-Cu-YH catalysts
Fig.4 H2-TPR profiles of the 10%-Cu-Y(YH) catalysts
催化剂还原峰温度/℃催化剂还原峰温度/℃
10%-Cu-Ce143,22810%-Cu-CeH184,226
10%-Cu-Al25610%-Cu-AlH319
10%-Cu-La273,31710%-Cu-LaH270,308
10%-Cu-Zr236,26010%-Cu-ZrH187,228
Table 3 H2-TPR reduction peak data analysis of 10%-Cu-Y(YH) catalysts
Fig.5 Catalytic combustion performances of the 10%-Cu-Y(YH) catalysts
催化剂T50/℃T95/℃ΔT50/℃aΔT95/℃
10%-Cu-Ce216255
10%-Cu-Al251310
10%-Cu-La280325
10%-Cu-Zr250286
10%-Cu-CeH214238↓2↓17
10%-Cu-AlH275330↑24↑20
10%-Cu-LaH271315↓8↓10
10%-Cu-ZrH217239↓33↓47
Table 4 Catalytic activity of 10%-Cu-Y(YH) catalysts
[1]   江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532. DOI:10.13227/j.hjkx.2015.09.051
JIANG M, ZOU L, LI X Q, et al. Definition and control indicators of volatile organic compounds in China[J]. Environmental Science, 2015, 36(9): 3522-3532. DOI:10.13227/j.hjkx.2015.09.051
doi: 10.13227/j.hjkx.2015.09.051
[2]   WU R, XIE S. Spatial distribution of secondary organic aerosol formation potential in China derived from speciated anthropogenic volatile organic compound emissions[J]. Environmental Science & Technology, 2018, 52(15): 8146-8156. DOI:10. 1021/acs.est.8b01269
doi: 10. 1021/acs.est.8b01269
[3]   HAN D, GAO S, FU Q, et al. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5 [J]. Atmospheric Research, 2018, 209: 123-130. DOI:10.1016/j.atmosres.2018.04.002
doi: 10.1016/j.atmosres.2018.04.002
[4]   LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B(Environmental), 2010, 100(3/4): 403-412. DOI:10.1016/j.apcatb.2010.08.023
doi: 10.1016/j.apcatb.2010.08.023
[5]   JOANNA K, SOPHIE C, WOJCIECH K. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes[J]. Journal of Membrane Science, 2015, 474: 11-19. DOI:10.1016/j.memsci.2014. 08.054
doi: 10.1016/j.memsci.2014. 08.054
[6]   LESON G, WINER A M. Biofiltration: An innovative air pollution control technology for VOC emissions[J]. Journal of the Air & Waste Management Association, 2012, 41(8): 1045-1054. DOI:10.1080/10473289.1991.10466898
doi: 10.1080/10473289.1991.10466898
[7]   PENG J X, WANG S D. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures[J]. Applied Catalysis B(Environmental), 2007, 73(3/4): 282-291. DOI:10.1016/j.apcatb.2006.12.012
doi: 10.1016/j.apcatb.2006.12.012
[8]   黎维彬, 龚浩. 催化燃烧去除VOCs污染物的最新进展[J]. 物理化学学报, 2010, 26(4): 885-894. DOI:10.3866/PKU.WHXB20100436
LI W B, GONG H. Recent progress in the removal of volatile organic compounds by catalytic combustion[J]. Acta Physico-Chimica Sinica, 2010, 26(4): 885-894. DOI:10.3866/PKU.WHXB20100436
doi: 10.3866/PKU.WHXB20100436
[9]   侯祎苗, 刘郡, 任爱玲, 等. Mn-Co尖晶石催化氧化EA[J]. 精细化工, 2022, 39(6): 1197-1204. DOI:10.13550/j.jxhg.20211151
HOU Y M, LIU J, REN A L, et al. Mn-Co spinel catalyzing oxidation of ethyl acetate[J]. Fine Chemicals, 2022, 39(6): 1197-1204. DOI:10. 13550/j.jxhg.20211151
doi: 10. 13550/j.jxhg.20211151
[10]   TAYLOR M J, DURNDELL L J, ISAACS M A, et al. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions[J]. Applied Catalysis B( Environmental), 2016, 180: 580-585. DOI:10.1016/j.apcatb.2015.07.006
doi: 10.1016/j.apcatb.2015.07.006
[11]   WANG M L, QIAN X Q, XIE L Q, et al. Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 1989-1997. DOI:10.1021/acssuschemeng.8b04256
doi: 10.1021/acssuschemeng.8b04256
[12]   YANG Y X, XU X L, SUN K P. A highly efficient copper supported catalyst for catalytic combustion of ethyl acetate[J]. Catalysis Communications, 2006, 7(10): 756-760. DOI:10.1016/j.catcom.2005.09.014
doi: 10.1016/j.catcom.2005.09.014
[13]   LARSSON P, ANDERSSON A. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania[J]. Journal of Catalysis, 1998, 179: 72-89. DOI:10.1006/jcat.1998.2198
doi: 10.1006/jcat.1998.2198
[14]   LI S M, HAO Q L, ZHAO R Z, et al. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chemical Engineering Journal, 2016, 285: 536-543. DOI:10. 1016/j.cej.2015.09.097
doi: 10. 1016/j.cej.2015.09.097
[15]   PEI T J, LIU L S, XU L K, et al. A novel glass fiber catalyst for the catalytic combustion of ethyl acetate[J]. Catalysis Communications, 2016, 74: 19-23. DOI:10.1016/j.catcom.2015.10.030
doi: 10.1016/j.catcom.2015.10.030
[16]   LIU X L, HAN Q Z, SHI W B, et al. Catalytic oxidation of ethyl acetate over Ru-Cu bimetallic catalysts: Further insights into reaction mechanism via in situ FTIR and DFT studies[J]. Journal of Catalysis, 2019, 369: 482-492. DOI:10.1016/j.jcat. 2018.11.025
doi: 10.1016/j.jcat. 2018.11.025
[17]   FAN X, WANG F, ZHU T L, et al. Effects of Ce on catalytic combustion of methane over Pd-Pt Al2O3 catalyst[J]. Journal of Environmental Sciences, 2012, 24(3): 507-511. DOI:10.1016/s1001-0742(11)60798-5
doi: 10.1016/s1001-0742(11)60798-5
[18]   LI Z K, LU G X. The role of monolayer dispersed copper oxide for benzene catalytic combustion over CuAl2O3 catalyst[J]. Journal of Molecular Catalysis, 2011, 25(6): 541-548. DOI:10.16084/j.cnki.issn1001-3555.2011.06.010
doi: 10.16084/j.cnki.issn1001-3555.2011.06.010
[19]   DIN I, NASIR Q, GARBA M D, et al. A review of preparation methods for heterogeneous catalysts[J]. Mini-Reviews in Organic Chemistry, 2022, 19(1): 92-110. DOI:10.2174/1570193x18666210308151136
doi: 10.2174/1570193x18666210308151136
[20]   SANKAR M, DIMITRATOS N, MIEDZIAK P J, et al. Designing bimetallic catalysts for a green and sustainable future[J]. Chemical Society Reviews, 2012, 41(24): 8099-8139. DOI:10.1039/c2cs35296f
doi: 10.1039/c2cs35296f
[21]   RALPHS K, HARDACRE C, JAMES S L. Application of heterogeneous catalysts prepared by mechanochemical synthesis[J]. Chemical Society Reviews, 2013, 42(18): 7701-18. DOI:10.1039/c3cs60066a
doi: 10.1039/c3cs60066a
[22]   XU C, DE S, BALU A M, et al. Mechanochemical synthesis of advanced nanomaterials for catalytic applications[J]. Chemical Communications, 2015, 51(31): 698-713. DOI:10.1039/c4cc09876e
doi: 10.1039/c4cc09876e
[23]   YE Y H, CHEN H, YE Y C, et al. Silica-supported copper (II) oxide cluster via ball milling method for catalytic combustion of ethyl acetate[J]. Catalysts, 2022, 12(5): 497-512. DOI:10.3390/catal12050497
doi: 10.3390/catal12050497
[24]   HE S F, JING Q S, YU W J, et al. Combination of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2 prepared with nickel citrate precursor[J]. Catalysis Today, 2009, 148(1): 130-133. DOI:10.1016/j.cattod.2009.03.009
doi: 10.1016/j.cattod.2009.03.009
[25]   MENG T, REN N, MA Z. Effect of copper precursors on the catalytic performance of Cu-ZSM-5 catalysts in N2O decomposition[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1051-1058. DOI:10.1016/j.cjche.2018.02.015
doi: 10.1016/j.cjche.2018.02.015
[26]   CHENG J, HAN S, YE Q, et al. Selective catalytic reduction of NO with NH3 over the Cu/SAPO-34 catalysts derived from different Cu precursors[J]. Microporous and Mesoporous Materials, 2019, 278: 423-434. DOI:10.1016/j.micromeso.2019. 01.013
doi: 10.1016/j.micromeso.2019. 01.013
[27]   周爱奕, 毛华峰, 盛重义, 等. 碱土金属钙沉积对Mn-Ce/TiO2低温SCR催化剂脱硝性能的影响[J]. 环境科学, 2014, 35(12): 4745-4751. DOI:10. 13227/j.hjkx.2014.12.043
ZHOU A Y, MAO H F, SHENG Z Y, et al. Poisoning effect of ca depositing over Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NO by NH3 [J]. Environmental Science, 2014, 35(12): 4745-4751. DOI:10.13227/j.hjkx. 2014.12.043
doi: 10.13227/j.hjkx. 2014.12.043
[28]   SANKARAN A, KUMARAGURU K, BALRAJ B, et al. Investigation on catalytic activity of CuO/La2O3, CuO/Gd2O3 and CuO/La2O3/Gd2O3 nanocatalysts prepared via novel two step approach[J]. Materials Science and Engineering(Ser B), 2021, 263: 114836-114850. DOI:10.1016/j.mseb.2020.114836
doi: 10.1016/j.mseb.2020.114836
[29]   YONG S T, OOI C W, CHAI S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552. DOI:10.1016/j.ijhydene.2013. 03.023
doi: 10.1016/j.ijhydene.2013. 03.023
[30]   徐洁书, 陶艳琪, 吴炳智, 等. CuO-SiO2@CeO2核壳结构催化剂及其催化CO氧化性能[J]. 安徽化工, 2021, 47(1): 43-45. DOI:10.3969/j.issn.1008-553X.2021.01.015
XU J S, TAO Y Q, WU B Z, et al. CuO-SiO2@CeO2 core shell structure catalyst and its catalytic performance for CO oxidation[J]. Anhui Chemical Industry, 2021, 47(1): 43-45. DOI:10. 3969/j.issn.1008-553X.2021.01.015
doi: 10. 3969/j.issn.1008-553X.2021.01.015
[31]   TAHIR D, TOUGAARD S. Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy[J]. Journal of Physics( Condensed Matter), 2012, 24(17): 175002-175009. DOI:10. 1088/0953-8984/24/17/175002
doi: 10. 1088/0953-8984/24/17/175002
[32]   BAHMANPOUR A, HÉROGUEL F, KILIÇ M, et al. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Applied Catalysis B (Environmental), 2020, 266: 118669-118676. DOI:10.1016/j.apcatb.2020.118669
doi: 10.1016/j.apcatb.2020.118669
[33]   LIU H, WANG K, CAO X, et al. A new highly active La2O3-CuO-MgO catalyst for the synthesis of cumyl peroxide by catalytic oxidation[J]. RSC Advances, 2021, 11(21): 12532-12542. DOI:10. 1039/d1ra00176k
doi: 10. 1039/d1ra00176k
[34]   KONSOLAKIS M, IOAKEIMIDIS Z. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions[J]. Applied Surface Science, 2014, 320: 244-255. DOI:10.1016/j.apsusc.2014.08.114
doi: 10.1016/j.apsusc.2014.08.114
[35]   张晨航, 豆宝娟, 滕子豪, 等. 基于Cu-Ce复合氧化物的低浓度CH4催化燃烧性能及微观机理[J]. 洁净煤技术, 2022, 28(1): 198-204. DOI:10.13226/j.issn.1006-6772.21081601
ZHANG C H, DOU B J, TENG Z H, et al. Performance and mechanism of low-concentration CH4 catalytic combustion based on composite oxides of Cu-Ce[J]. Clean Coal Technology, 2022, 28(1): 198-204. DOI:10.13226/j.issn.1006-6772. 21081601
doi: 10.13226/j.issn.1006-6772. 21081601
[36]   CUI G Q, ZHANG X, WANG H, et al. ZrO2- x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation[J]. Applied Catalysis B (Environmental), 2021, 280: 119406-119416. DOI:10.1016/j.apcatb.2020.119406
doi: 10.1016/j.apcatb.2020.119406
[37]   SINGH R, TRIPATHI K, PANT K, et al. Unravelling synergetic interaction over tandem Cu-ZnO-ZrO2/hierarchical ZSM5 catalyst for CO2 hydrogenation to methanol and DME[J]. Fuel, 2022, 318: 123641-123652. DOI:10.1016/j.fuel.2022. 123641
doi: 10.1016/j.fuel.2022. 123641
[38]   LAO Y J, JIANG X X, HUANG J, et al. Catalytic oxidation of ethyl acetate on Ce-Mn-O catalysts modified by La[J]. Rare Metals, 2020, 40(3): 547-554. DOI:10.1007/s12598-019-01357-5
doi: 10.1007/s12598-019-01357-5
[39]   GAO G, SHI J W, LIU C, et al. Mn/CeO2 catalysts for SCR of NO x with NH3 : Comparative study on the effect of supports on low-temperature catalytic activity[J]. Applied Surface Science, 2017, 411: 338-346. DOI:10.1016/j.apsusc.2017.03.164
doi: 10.1016/j.apsusc.2017.03.164
[40]   ZOU H B, DONG X F, LIN W M. Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts[J]. Applied Surface Science, 2006, 253(5): 2893-2898. DOI:10.1016/j.apsusc.2006. 06.028
doi: 10.1016/j.apsusc.2006. 06.028
[41]   CHEN C C, LIN L, YE R P, et al. Mannitol as a novel dopant for Cu/SiO2: A low-cost, environmental and highly stable catalyst for dimethyl oxalate hydrogenation without hydrogen prereduction[J]. Journal of Catalysis, 2020, 389: 421-431. DOI:10.1016/j.jcat.2020.06.008
doi: 10.1016/j.jcat.2020.06.008
[42]   HE M, LUO M F, FANG P. Characterization of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst by in-situ XRD, raman spectroscopy and TPR[J]. Journal of Rare Earths, 2006, 24(2): 188-192. DOI:10.1016/s1002-0721(06)60091-4
doi: 10.1016/s1002-0721(06)60091-4
[43]   WU Y Q, XIE H J, TIAN S P, et al. Isobutanol synthesis from syngas over K–Cu/ZrO2–La2O3(x)catalysts: Effect of La-loading[J]. Journal of Molecular Catalysis A (Chemical), 2015, 396: 254-260. DOI:10.1016/j.molcata.2014.10.003
doi: 10.1016/j.molcata.2014.10.003
[44]   YERGAZIYEVA G Y, К DOSSUMOV, MAMBETOVA М М, et al. Effect of Ni, La, and Ce oxides on Cu/Al2O3 catalyst with low copper loading for ethanol non-oxidative dehydrogenation[J]. Chemical Engineering & Technology, 2021, 44(10): 1890-1899. DOI:10.1002/ceat.202100112
doi: 10.1002/ceat.202100112
[45]   ZHANG J, HE D. Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide[J]. Journal of Colloid and Interface Science, 2014, 419: 31-38. DOI:10.1016/j.jcis. 2013.12.049
doi: 10.1016/j.jcis. 2013.12.049
[46]   JIAO G P, DING Y J, ZHU H J, et al. Effect of La2O3 doping on syntheses of C1-C18 mixed linear α-alcohols from syngas over the Co/AC catalysts[J]. Applied Catalysis A(General), 2009, 364(1/2): 137-142. DOI:10.1016/j.apcata.2009.05.040
doi: 10.1016/j.apcata.2009.05.040
[47]   HUANG Y H, WANG S F, TSAI A P, et al. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Ceramics International, 2014, 40(3): 4541-4551. DOI:10.1016/j.ceramint.2013.08.130
doi: 10.1016/j.ceramint.2013.08.130
[48]   ZHANG Y J, ZHANG Y, DING F, et al. Synthesis of DME by CO2 hydrogenation over La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts[J]. Chemical Industry and Chemical Engineering Quarterly, 2017, 23(1): 49-56. DOI:10.2298/ciceq150711005z
doi: 10.2298/ciceq150711005z
[49]   刘雅杰, 庆绍军, 侯晓宁, 等. Cu-Al尖晶石的合成及非等温生成动力学分析[J]. 燃料化学学报, 2020, 48(3): 338-348. DOI:10.3969/j.issn.0253-2409. 2020.03.010
LIU Y J, QING S J, HOU X N, et al. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 338-348. DOI:10.3969/j.issn.0253-2409.2020.03.010
doi: 10.3969/j.issn.0253-2409.2020.03.010
[50]   YU W, YAN J, CUI Z W, et al. Steam reforming of methanol over mesoporous Cu-Al spinel catalysts synthesized by mechanochemical method[J]. Journal of the Indian Chemical Society, 2022, 99(1): 100286-100291. DOI:10.1016/j.jics.2021.100286
doi: 10.1016/j.jics.2021.100286
[51]   刘雅杰, 张文月, 边文璐, 等. 程序升温还原技术对Cu-Al尖晶石材料的表征识别[J]. 化学研究与应用, 2022, 34(2): 391-398. DOI:10.3969/j.issn.1004-1656.2022. 02.023
LIU Y J, ZHANG W Y, BIAN W L, et al. Characterization and identification of Cu-Al spinel materials via H2-TPR technique[J]. Chemical Research and Application, 2022, 34(2): 391-398. DOI:10.3969/j.issn.1004-1656.2022.02.023
doi: 10.3969/j.issn.1004-1656.2022.02.023
[52]   YAN X H, ZHANG H F, WU C L, et al. Pd/CeO2/γ-Al2O3 catalyst with low loading for catalytic oxidation of VOCs[J]. Journal of Inorganic Materials, 2019, 34(8): 827-833. DOI:10.15541/jim20180523
doi: 10.15541/jim20180523
[53]   WEN X Y, LI W C, YAN J X, et al. Strong metal-support interaction in Pd/CeO2 promotes the catalytic activity of ethyl acetate oxidation[J]. The Journal of Physical Chemistry C, 2022, 126(3): 1450-1461. DOI:10.1021/acs.jpcc.1c10421
doi: 10.1021/acs.jpcc.1c10421
[54]   MITSUI T, TSUTSUI K, MATSUI T, et al. Support effect on complete oxidation of volatile organic compounds over Ru catalysts[J]. Applied Catalysis B( Environmental), 2008, 81(1/2): 56-63. DOI:10.1016/j.apcatb.2007.12.006
doi: 10.1016/j.apcatb.2007.12.006
No related articles found!