Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (4): 465-471    DOI: 10.3785/j.issn.1008-9497.2023.04.010
Physics     
Capacitor theory and triboelectric nanogenerator
Pinshu RUI(),Dongpeng LI
School of Physics and Materials Engineering,Hefei Normal University,Hefei 230601,China
Download: HTML( 2 )   PDF(1408KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In this paper, we first study the capacitance and energy of the capacitor when the dielectric surface inside the capacitor is charged. The results show that the capacitance and energy formula in this case are in the same form as that depicted in traditional capacitance theory, but the charge of the capacitor needs to be modified according to the charge of the dielectric surface. Then we use the capacitance theory to study the output performance of the contact-separation mode triboelectric nanogenerator (TENG). It is found that the final stable output of the contact-separation mode TENG is different from the output of the initial short time. Through theoretical deduction and numerical calculation, the electric quantity, voltage and current of contact-separation mode TENG are obtained. Finally, we analyze the charge transfer process of TENG in detail based on the theoretical calculation results. That is, when the external resistance can not be ignored, the electrode charge has a certain hysteresis effect relative to the electrode position. Our results not only generalize the capacitance theory, but also improve the working principle of TENG.



Key wordscapacitance      triboelectric nanogenerator      theoretical analysis      numerical calculation     
Received: 17 March 2022      Published: 17 July 2023
CLC:  O 441  
Cite this article:

Pinshu RUI,Dongpeng LI. Capacitor theory and triboelectric nanogenerator. Journal of Zhejiang University (Science Edition), 2023, 50(4): 465-471.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I4/465


电容器理论与摩擦纳米发电机

研究了当电容器内的电介质表面带电荷时电容器的电容和储能,得到二者在形式上与传统电容器完全相同,但所带电量需根据介质表面所带电量进行修正。利用电容理论研究了接触分离式摩擦纳米发电机(triboelectric nanogenerator,TENG)的输出性能,经理论推导和数值计算,得到了接触分离式TENG的电量、电压与输出电流。最后根据理论计算结果详细讨论了TENG的电荷转移过程。研究不仅推广了电容相关理论,而且完善了对TENG工作原理的描述。


关键词: 电容,  摩擦纳米发电机,  理论分析,  数值计算 
Fig.1 Expansion model of parallel plate capacitor
Fig.2 Contact-separation TENG model
Fig.3 State parameters of contact-separation TENG at any time
Fig.4 Electric charge for the electrode of TENG under external resistance R=107 Ω
Fig.5 Output current of TENG under external resistance R=107 Ω
Fig.6 Electric charge for the electrode of TENG under external resistance R=0
Fig.7 Output current of TENG under external resistance R=0
Fig.8 Open circuit voltage of TENG
Fig.9 Electric charge for the electrode of TENG via different external resistance RElectric charge in multiple periods for the main picture and for the illustration when the two poles touch eath other.
Fig.10 Charge transfer of TENG when resistance R is small
Fig.11 Charge transfer of TENG when resistance R is large
[1]   汪洪, 韩家骅. 大学物理学[M]. 4版. 合肥:安徽大学出版社, 2020:65-66.
WANG H, HAN J H. The Study of College Physics[M]. Hefei: Anhui University Press, 2020:65-66.
[2]   FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator![J]. Nano Energy, 2012, 1(2): 328-334. DOI:10.1016/j.nanoen.2012.01.004
doi: 10.1016/j.nanoen.2012.01.004
[3]   WU Z Y, CHENG T H, WANG Z L. Self-powered sensors and systems based on nanogenerators[J]. Sensors, 2020,20(10): 2925. DOI:10.3390/s20102925
doi: 10.3390/s20102925
[4]   王中林, 陈鹏飞. 从物联网时代的高熵能源到迈向碳中和的蓝色大能源:接触起电的物理机理与摩擦纳米发电机的科学构架[J]. 物理, 2021, 50(10): 649-662. DOI:10.7693/wl20211001
WANG Z L, CHEN P F. From high-entropy energy in the era of the internet of things to big blue energy with carbon neutrality: physical mechanism of contact electrification and scientific framework of triboelectric nanogenerator[J]. Physics, 2021, 50(10): 649-662. DOI:10.7693/wl20211001
doi: 10.7693/wl20211001
[5]   ZHU G, PAN C F, GUO W X, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 2012, 12(9): 4960-4965. DOI:10.1021/nl302560k
doi: 10.1021/nl302560k
[6]   WANG S H, LIN L, XIE Y N, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano Letters, 2013, 13(5): 2226-2233. DOI:10.1021/nl400738p
doi: 10.1021/nl400738p
[7]   WANG S H, XIE Y N, NIU S M, et al. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes[J]. Advanced Materials, 2014, 26(18): 2818-2824. DOI:10.1002/adma.201305303
doi: 10.1002/adma.201305303
[8]   YANG Y, ZHANG H L, CHEN J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system[J]. ACS Nano, 2013, 7(8): 7342-7351. DOI:10.1021/nn403021m
doi: 10.1021/nn403021m
[9]   王中林,林龙,牛思淼,等. 摩擦纳米发电机[M]. 北京:科学出版社, 2017. doi:10.1007/978-3-319-40039-6_5
WANG Z L, LIN L, NIU S M,et al. Triboelectric Nanogenerator[M]. Beijing: Science Press, 2017. doi:10.1007/978-3-319-40039-6_5
doi: 10.1007/978-3-319-40039-6_5
[10]   NIU S M, WANG S H, LIN L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & Environmental Science, 2013, 6(12): 3576-3583. DOI:10.1039/c3ee42571a
doi: 10.1039/c3ee42571a
[11]   WANG S H, NIU S M, YANG J, et al. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator[J]. ACS Nano, 2014, 8(12): 12004-12013. DOI:10. 1021/nn5054365
doi: 10. 1021/nn5054365
[12]   NIU S M, WANG X F, YI F, et al. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature Communications, 2015, 6: 8975. DOI:10.1038/ncomms9975
doi: 10.1038/ncomms9975
[1] Ran XIAO,Xinlei AN,Huimin QI,Shuai QIAO. Bifurcation analysis and parameter identification of HR neurons under electric field[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 691-697.