Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (4): 465-471    DOI: 10.3785/j.issn.1008-9497.2023.04.010
物理学     
电容器理论与摩擦纳米发电机
芮品淑(),李冬鹏
合肥师范学院 物理与材料工程学院,安徽 合肥 230601
Capacitor theory and triboelectric nanogenerator
Pinshu RUI(),Dongpeng LI
School of Physics and Materials Engineering,Hefei Normal University,Hefei 230601,China
 全文: PDF(1408 KB)   HTML( 2 )
摘要:

研究了当电容器内的电介质表面带电荷时电容器的电容和储能,得到二者在形式上与传统电容器完全相同,但所带电量需根据介质表面所带电量进行修正。利用电容理论研究了接触分离式摩擦纳米发电机(triboelectric nanogenerator,TENG)的输出性能,经理论推导和数值计算,得到了接触分离式TENG的电量、电压与输出电流。最后根据理论计算结果详细讨论了TENG的电荷转移过程。研究不仅推广了电容相关理论,而且完善了对TENG工作原理的描述。

关键词: 电容摩擦纳米发电机理论分析数值计算    
Abstract:

In this paper, we first study the capacitance and energy of the capacitor when the dielectric surface inside the capacitor is charged. The results show that the capacitance and energy formula in this case are in the same form as that depicted in traditional capacitance theory, but the charge of the capacitor needs to be modified according to the charge of the dielectric surface. Then we use the capacitance theory to study the output performance of the contact-separation mode triboelectric nanogenerator (TENG). It is found that the final stable output of the contact-separation mode TENG is different from the output of the initial short time. Through theoretical deduction and numerical calculation, the electric quantity, voltage and current of contact-separation mode TENG are obtained. Finally, we analyze the charge transfer process of TENG in detail based on the theoretical calculation results. That is, when the external resistance can not be ignored, the electrode charge has a certain hysteresis effect relative to the electrode position. Our results not only generalize the capacitance theory, but also improve the working principle of TENG.

Key words: capacitance    triboelectric nanogenerator    theoretical analysis    numerical calculation
收稿日期: 2022-03-17 出版日期: 2023-07-17
CLC:  O 441  
基金资助: 安徽省高等学校省级质量工程项目(省级“六卓越、一拔尖”卓越人才培养创新项目)(2020zyrc128)
作者简介: 芮品淑(1986—),ORCID:https://orcid.org/0000-0003-2921-1381,女,博士,讲师,主要从事大学物理、大学物理实验的教学研究工作,E-mail:ruips@hfnu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
芮品淑
李冬鹏

引用本文:

芮品淑,李冬鹏. 电容器理论与摩擦纳米发电机[J]. 浙江大学学报(理学版), 2023, 50(4): 465-471.

Pinshu RUI,Dongpeng LI. Capacitor theory and triboelectric nanogenerator. Journal of Zhejiang University (Science Edition), 2023, 50(4): 465-471.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.04.010        https://www.zjujournals.com/sci/CN/Y2023/V50/I4/465

图1  平行板电容器的扩展模型示意
图2  接触分离式TENG模型
图3  接触分离式TENG任意时刻状态参数
图4  当外电阻R=107 Ω时TENG电极的电量
图5  当外电阻R=107 Ω时TENG的输出电流
图6  当外电阻R=0时TENG电极的电量
图7  当外电阻R=0时TENG的输出电流
图8  当外电路开路时TENG两端的电压
图9  不同外电阻R时TENG电极上的电量主图为多周期的电量,插图为两极相互接触时的电量。
图10  当外电阻R较小时TENG的电量转移
图11  当外电阻R较大时TENG的电量转移
1 汪洪, 韩家骅. 大学物理学[M]. 4版. 合肥:安徽大学出版社, 2020:65-66.
WANG H, HAN J H. The Study of College Physics[M]. Hefei: Anhui University Press, 2020:65-66.
2 FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator![J]. Nano Energy, 2012, 1(2): 328-334. DOI:10.1016/j.nanoen.2012.01.004
doi: 10.1016/j.nanoen.2012.01.004
3 WU Z Y, CHENG T H, WANG Z L. Self-powered sensors and systems based on nanogenerators[J]. Sensors, 2020,20(10): 2925. DOI:10.3390/s20102925
doi: 10.3390/s20102925
4 王中林, 陈鹏飞. 从物联网时代的高熵能源到迈向碳中和的蓝色大能源:接触起电的物理机理与摩擦纳米发电机的科学构架[J]. 物理, 2021, 50(10): 649-662. DOI:10.7693/wl20211001
WANG Z L, CHEN P F. From high-entropy energy in the era of the internet of things to big blue energy with carbon neutrality: physical mechanism of contact electrification and scientific framework of triboelectric nanogenerator[J]. Physics, 2021, 50(10): 649-662. DOI:10.7693/wl20211001
doi: 10.7693/wl20211001
5 ZHU G, PAN C F, GUO W X, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 2012, 12(9): 4960-4965. DOI:10.1021/nl302560k
doi: 10.1021/nl302560k
6 WANG S H, LIN L, XIE Y N, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano Letters, 2013, 13(5): 2226-2233. DOI:10.1021/nl400738p
doi: 10.1021/nl400738p
7 WANG S H, XIE Y N, NIU S M, et al. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes[J]. Advanced Materials, 2014, 26(18): 2818-2824. DOI:10.1002/adma.201305303
doi: 10.1002/adma.201305303
8 YANG Y, ZHANG H L, CHEN J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system[J]. ACS Nano, 2013, 7(8): 7342-7351. DOI:10.1021/nn403021m
doi: 10.1021/nn403021m
9 王中林,林龙,牛思淼,等. 摩擦纳米发电机[M]. 北京:科学出版社, 2017. doi:10.1007/978-3-319-40039-6_5
WANG Z L, LIN L, NIU S M,et al. Triboelectric Nanogenerator[M]. Beijing: Science Press, 2017. doi:10.1007/978-3-319-40039-6_5
doi: 10.1007/978-3-319-40039-6_5
10 NIU S M, WANG S H, LIN L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & Environmental Science, 2013, 6(12): 3576-3583. DOI:10.1039/c3ee42571a
doi: 10.1039/c3ee42571a
11 WANG S H, NIU S M, YANG J, et al. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator[J]. ACS Nano, 2014, 8(12): 12004-12013. DOI:10. 1021/nn5054365
doi: 10. 1021/nn5054365
12 NIU S M, WANG X F, YI F, et al. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature Communications, 2015, 6: 8975. DOI:10.1038/ncomms9975
doi: 10.1038/ncomms9975
[1] 黄秋焰,罗坤,樊建人. 半圆形粗糙元壁面颗粒沉积数值模拟研究[J]. 浙江大学学报(理学版), 2022, 49(1): 112-120.
[2] 丁 扣 宝 张 秀森. 线性电压扫描法测量硅的体产生寿命和表面产生速度的研究`[J]. 浙江大学学报(理学版), 1995, 22(1): 22-27.