Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (1): 112-120    DOI: 10.3785/j.issn.1008-9497.2022.01.015
环境科学     
半圆形粗糙元壁面颗粒沉积数值模拟研究
黄秋焰,罗坤(),樊建人
浙江大学 能源工程学院,浙江 杭州 310027
Numerical simulation of particle deposition in semicircular ribbed duct
Qiuyan HUANG,Kun LUO(),Jianren FAN
Energy Engineering College,Zhejiang University,Hangzhou 310027,China
 全文: PDF(5117 KB)   HTML( 123 )
摘要:

为研究半圆形粗糙元壁面对颗粒沉积的影响,分别采用雷诺应力模型(RSM)和离散相模型(DPM)求解流场与颗粒运动轨迹,并结合临界速度判别颗粒沉积的方法。通过构建不同半圆形粗糙元参数(e/Dp/e)的通风管道计算域,研究了1~10 μm颗粒沉积速度变化及沿气流方向颗粒的沉积趋势,分析了流场所引起的湍流变化对颗粒沉积的影响,与相同参数下的方形粗糙元壁面颗粒沉积特性进行了对比。同时,分析了粗糙元参数对颗粒沉积速度的影响。结果发现,半圆形壁面颗粒沉积速度小于同参数下的方形壁面颗粒沉积速度,这是由于半圆形壁面的回流区相对方形粗糙元更小,捕捉颗粒能力差,半圆形粗糙元流体附壁效应导致半圆形粗糙元拦截效率较低。当e/D=0.02,p/e=3时,颗粒沉积速度变化较大,但在其余参数下变化并不大。半圆形粗糙元壁面的迎风面是颗粒沉积的主要区域。

关键词: 半圆形粗糙元颗粒沉积气固两相流数值计算    
Abstract:

In this study,the influences of rib spacing and height on particle deposition in semicircle ribbed duct air flows are numerically investigated,RSM and DPM are used to solve the flow field and particle trajectory respectively,and the critical velocity is used to identify particle deposition. Different semicircular rough element parameters (e/D,p/e) are designed to investigate particle deposition velocity. The result is also compared with that in square ribbed duct.It is found that particle deposition velocity in semicircle ribbed duct is lower than that in square ribbed duct with the same rough element parameters.This is because of that the recirculation zone of the semicircular ribbed wall is smaller than that of the square rough element,and the ability to capture particles is poor.At the same time,the semicircular rough element has a lower interception efficiency. Besides,the influence of rough element parameters on particle deposition velocity is also analyzed.The results show that the particle deposition rate changes greatly when e/D=0.02 and p/e=3,but does not change much under other parameters. Moreover,the windward surfaces are the main deposition regions.

Key words: semicircular ribbed duct    particle deposition    gas-solid two-phase    numerical simulation
收稿日期: 2020-10-16 出版日期: 2022-01-18
CLC:  TK 121  
基金资助: 国家杰出青年科学基金项目(51925603)
通讯作者: 罗坤     E-mail: zjulk@zju.edu.cn
作者简介: 黄秋焰(1995—),ORCID:https://orcid.org/0000-0003-2322-5790,男,硕士研究生,主要从事颗粒沉积研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄秋焰
罗坤
樊建人

引用本文:

黄秋焰,罗坤,樊建人. 半圆形粗糙元壁面颗粒沉积数值模拟研究[J]. 浙江大学学报(理学版), 2022, 49(1): 112-120.

Qiuyan HUANG,Kun LUO,Jianren FAN. Numerical simulation of particle deposition in semicircular ribbed duct. Journal of Zhejiang University (Science Edition), 2022, 49(1): 112-120.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.01.015        https://www.zjujournals.com/sci/CN/Y2022/V49/I1/112

图1  粗糙元壁面计算域示意
编号空气速度/(m·s-1颗粒粒径/μme/Dp/e
151,2,3,5,8,100.058
251,2,3,5,8,100.0510
351,2,3,5,8,100.055
451,2,3,5,8,100.053
551,2,3,5,8,100.18
651,2,3,5,8,100.28
751,2,3,5,8,100.028
表1  计算算例
图2  X=150 mm处流场验证
图3  颗粒沉积模型验证
图4  2种粗糙元壁面速度分布
图5  2种粗糙元附近流场矢量图与流线图
图6  2种粗糙元附近湍动能分布(上方为方形粗糙元,下方为半圆形粗糙元)
图7  2种粗糙元在不同颗粒无量纲松弛时间下的沉积速度对比
图8  在不同粗糙元参数下半圆形粗糙元壁面的颗粒沉积分布
1 MEGIDO L,SUáREZ-PE?A B,NEGRAL L, et al.Suburban air quality:Human health hazard assessment of potentially toxic elements in PM10[J].Chemosphere,2017,177:284-291. DOI:10.1016/j.chemosphere.2017.03.009
doi: 10.1016/j.chemosphere.2017.03.009
2 杨新兴,冯丽华,尉鹏.大气颗粒物PM2.5及其危害[J].前言科学,2012,6(1):22-31. DOI:10.3969/j.issn.1673-8128.2012.01.005
YANG X X,FENG L H,YU P. Air particulate matter PM2.5 in Beijing and its harm[J].Frontier Science,2012,6(1):22-31. DOI:10.3969/j.issn.1673-8128. 2012.01.005
doi: 10.3969/j.issn.1673-8128. 2012.01.005
3 索丹凤,曾三武.空气细颗粒物PM2.5对人体各系统危害的研究[J].医学信息,2019,32(18):32-34. DOI:10.3969/j.issn.1006-1959.2019.18.011
SUO D F,ZENG S W.Research on the harm of air fine particulate matter PM2.5 to various human systems[J].Medical Information,2019,32(18):32-34. DOI:10.3969/j.issn.1006-1959.2019.18.011
doi: 10.3969/j.issn.1006-1959.2019.18.011
4 PAV?O L V,COSTA C B B,RAVAGNANI M A S S.Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization[J].Chemical Engineering Science,2017,158:96-107. DOI:10.1016/j.ces.2016.09.030
doi: 10.1016/j.ces.2016.09.030
5 ZHOU J W,DU C L,LIU S Y,et al.Comparison of three types of swirling generators in coarse particle pneumatic conveying using CFD-DEM simulation[J].Powder Technology,2016,301:1309-1320. DOI:10. 1016/j.powtec.2016.07.047
doi: 10. 1016/j.powtec.2016.07.047
6 LAI A C K,BYRNE M A,GODDARD A J H.Enhanced particle loss in ventilation duct with ribbed surface[J].Building and Environment,2000,35(5):425-432. DOI:10.1016/S0360-1323(99)00036-0
doi: 10.1016/S0360-1323(99)00036-0
7 LAI A C K,BYRNE M A,GODDARD A J H.Measured deposition of aerosol particles on a two-dimensional ribbed surface in a turbulent duct flow[J].Journal of Aerosol Science,1999,30(9):1201-1214. DOI:10.1016/S0021-8502(99)00021-X
doi: 10.1016/S0021-8502(99)00021-X
8 LU H,LU L.Effects of rib spacing and height on particle deposition in ribbed duct air flows[J].Building and Environment,2015,92:317-327. DOI:10.1016/j.buildenv.2015.04.035
doi: 10.1016/j.buildenv.2015.04.035
9 HONG W P,WANG B H,ZHENG J X.Numerical study on the influence of fine particle deposition characteristics on wall roughness[J].Powder Technology,2020,360:120-128. DOI:10.1016/j.powtec.2019.09.079
doi: 10.1016/j.powtec.2019.09.079
10 TIAN L,AHMADI G.Particle deposition in turbulent duct flows-comparisons of different model predictions[J].Journal of Aerosol Science,2007,38(4):377-397. DOI:10.1016/j.jaerosci.2006.12.003
doi: 10.1016/j.jaerosci.2006.12.003
11 LU H,ZHAO W J.Numerical study of particle deposition in turbulent duct flow with a forward-or backward-facing step[J].Fuel,2018,234:189-198. DOI:10.1016/j.fuel.2018.07.033
doi: 10.1016/j.fuel.2018.07.033
12 洪文鹏,齐琪.粗糙元壁面流道内颗粒趋壁沉积特性的数值研究[J].中国电机工程学报,2016,36:147-153. DOI:10.13334/j.0258-8013.pcsee.160975
HONG W P,QI Q.Numerical study on characteristics of particle deposition with rough surfaces[J].Proceedings of the CSEE,2016,36:147-153. DOI:10. 13334/j.0258-8013.pcsee.160975
doi: 10. 13334/j.0258-8013.pcsee.160975
13 BRACH R M,DUNN P F.A mathematical model of the impact and adhesion of microsphers[J].Aerosol Science and Technology,1992,16(1):51-64. DOI:10.1080/02786829208959537
doi: 10.1080/02786829208959537
14 SOLTANI M,AHMADI G.Detachment of rough particles with electrostatic attraction from surfaces in turbulent flows[J].Journal of Adhesion Science and Technology,1999,13(3):325-355. DOI:10.1163/156856199X00668
doi: 10.1163/156856199X00668
15 HAN Z M,XU Z M,YU X Y,et al.Numerical simulation of ash particles deposition in rectangular heat exchange channel[J].International Journal of Heat and Mass Transfer,2019,136:767-776. DOI:10.1016/j.ijheatmasstransfer.2019.01.114
doi: 10.1016/j.ijheatmasstransfer.2019.01.114
16 AI W G.Deposition of Particulate from Coal-Derived Syngas on Gas Turbine Blades Near Film Cooling Holes[D]. Provo:Brigham Young University,2009. doi:10.1115/gt2009-59571
doi: 10.1115/gt2009-59571
17 XU Z M,SUN A,HAN Z M,et al.Improvement of particle deposition model using random function method[J].Building and Environment,2019,158:192-204. DOI:10.1016/j.buildenv.2019.05.021
doi: 10.1016/j.buildenv.2019.05.021
18 ZHAO B,WU J.Modeling particle deposition onto rough walls in ventilation duct[J].Atmospheric Environment,2006,40(36):6918-6927. DOI:10. 1016/j.atmosenv.2006.06.015
doi: 10. 1016/j.atmosenv.2006.06.015
19 LU H,MA T,LU L.Deposition characteristics of particles in inclined heat exchange channel with surface ribs[J].International Journal of Heat and Mass Transfer,2020,161:120289. DOI:10.1016/j.ijheatmasstransfer.2020.120289
doi: 10.1016/j.ijheatmasstransfer.2020.120289
20 KIM J,MOIN P,MOSER R.Turbulence statistics in fully developed channel flow at low reynolds number[J].Journal of Fluid Mechanics,1987,177:133-166. DOI:10.1017/S0022112087000892
doi: 10.1017/S0022112087000892
21 JIANG H,LU L,SUN K.Simulation of particle deposition in ventilation duct with a particle-wall impact model[J].Building and Environment,2010,45(5):1184-1191. DOI:10.1016/j.buildenv.2009. 11.001
doi: 10.1016/j.buildenv.2009. 11.001
[1] 芮品淑,李冬鹏. 电容器理论与摩擦纳米发电机[J]. 浙江大学学报(理学版), 2023, 50(4): 465-471.