Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (4): 443-456    DOI: 10.3785/j.issn.1008-9497.2022.04.008
数学与计算机科学     
图嵌入算法研究进展
刘华玲(),张国祥,马俊
上海对外经贸大学 统计与信息学院,上海 201600
Research progress of graph embedding algorithms
Hualing LIU(),Guoxiang ZHANG,Jun MA
School of Statistics and Information,Shanghai University of International Business and Economics,Shanghai 201600,China
 全文: PDF(1663 KB)   HTML( 6 )
摘要:

图嵌入算法是将高维网络信息映射至低维后用实数向量表示的一种方法,用于解决推荐系统、社区发现及节点分类等。近年来,随着科技的进步,图数据呈现海量、异构、高维、多模态等特点,机器学习等人工智能算法对高性能的图嵌入算法的需求日益增加,图嵌入已成为国内外人工智能领域的研究热点之一。对图嵌入算法的研究进展、技术原理及基础理论进行了综述,系统概述了已有的主流图嵌入算法,包括基于降维方法的图嵌入、基于矩阵分解的图嵌入、基于网络拓扑结构的图嵌入、基于神经网络的图嵌入、基于生成式对抗网络的图嵌入和基于超图网络的图嵌入,对这些算法进行了分析与比较,并给出了相应的应用场景;归纳总结了常用的测试数据集及其评价标准;最后,展望了图嵌入算法的研究趋势和方向。

关键词: 图网络图嵌入深度学习神经网络表示学习    
Abstract:

As an important form of expressing the relationship among entities, graph networks have been widely used in data analysis, relational reasoning, and information services. For these applications, how to reasonably represent network characteristic information is the primary task of network analysis research. Graph embedding technology solves the problem of how to efficiently and reasonably map massive, heterogeneous, and complex high-dimensional graph data to low-dimensional vector space while still retaining the original data feature information. This paper aims to survey the algorithm and research progress of graph embedding in recent years, analyze the development status of this field, and explore the direction for subsequent research. First, it reviews the principle and basic theory of graph embedding technology, then systematically investigates the current mainstream graph embedding algorithms, including graph embedding approaches based respectively on dimensionality reduction, matrix decomposition,network topology,neural network, generative adversarial network, and hypergraph. Then we show the application scenarios of graph embedding technology and introduce the commonly used test data sets and evaluation criteria. Finally, we highlight the future research trends and directions of graph embedding, such as dynamic graph embedding, graph embedding scalability and interpretability.

Key words: graph network    graph embedding    deep learning    neural network    representation learning
收稿日期: 2021-02-25 出版日期: 2022-07-13
CLC:  TP 311  
基金资助: 上海市哲学社会科学规划课题项目(2018BJB023);国家社科基金重大项目(21ZDA105)
作者简介: 刘华玲(1964—),ORCID:https://orcid.org/0000-0002-3980-6955,女,博士,教授,主要从事知识管理与智能决策、隐私保护、互联网金融等研究,E-mail:liuhl@suibe.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘华玲
张国祥
马俊

引用本文:

刘华玲,张国祥,马俊. 图嵌入算法研究进展[J]. 浙江大学学报(理学版), 2022, 49(4): 443-456.

Hualing LIU,Guoxiang ZHANG,Jun MA. Research progress of graph embedding algorithms. Journal of Zhejiang University (Science Edition), 2022, 49(4): 443-456.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.04.008        https://www.zjujournals.com/sci/CN/Y2022/V49/I4/443

图1  图嵌入原理
类型年份刊物方法时间复杂度
基于降维方法1986SpringerPCA-
1994NIPSMDSO(|V|d2
2000ScienceLLEO(|E|d3
2001IEEELDAO(n3
2003IJCAIkernel methodsO(n)
基于矩阵分解2008ACMNPMF-
2013WWWGraph Laplacian EigenmapsO(|E|d)
2015CIKMGraRepO(|V|3
2016IEEEHSCA网络-
2016KDDHOPEO(|E|d2
基于网络拓扑结构信息2014KDDDeepWalkO(|V|d)
2015WWWLINEO(|E|d)
2016KDDnode2vecO(|V|d)
2017NIPSGraphSAGEO(|V|d)
基于神经网络2016KDDSDNEO(|V||E|)
2017ICLRGCNO(|E|d2
2018ACNEGES-
基于生成式对抗网络2017ArXivGraphGAN-
2018ACMNetRA-
基于超图网络2017CORRDHNE-
2018ArXivHGNN-
2021ACM WSDMHWNN-
表 1  嵌入模型概况
图2  Node2vec算法节点跳转原理
图 3  SDNE模型结构
图 4  NetRA模型框架
表示超图
A (|V| × |V|)H (|V| × |E|)
最小割NP难NP完全
谱聚类实值优化实值优化
谱嵌入矩阵分解投影至特征空间
表2  图与超图的特性对比
图 5  图和超图图示[38]
图嵌入算法适用数据集优势不足应用
基于降维方法高维稀疏数据

数学原理简单、

易于理解和实施

无法捕捉高阶相似度节点分类、节点聚类
基于矩阵分解稀疏数据可以捕捉全局结构高时间复杂度节点分类、节点聚类

基于网络拓扑

结构信息

大部分数据集

可以捕获节点间的

远距离关系

无法保留全局结构

节点分类、链接预测、

可视化、图分类

基于神经网络大部分数据集有效且健壮高计算成本

节点分类、链接预测、

三元组预测

基于生成式对抗网络复杂数据

充分利用不同来源的

结构信息,改善了嵌入精度

难以证明合理性节点分类、图分类
基于超图网络复杂数据可以处理复杂的图网络数据难以实施节点分类
表3  图嵌入算法特性分析
名称社交网络合成网络语言网络协作网络

生物

网络

BLOGCATALOGFLICKRYOUTUBEKARATESYN-SBMWIKIPEDIACiteSeerASTRO-PHCoraPPI
节点数10 31280 5131 157 827341 0242 4053 31218 7722 7083 890
边数333 9835 899 8824 945 3827829 83317 9814 723396 1605 42938 739
平均度64.7843.748.544.5958.27-5.2731.5546.7319.92
标签数391954723196750
加权图
有向图
表4  数据集概况
1 GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: A survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. DOI:10.1016/j.knosys.2018.03.022
doi: 10.1016/j.knosys.2018.03.022
2 CAI H Y, ZHENG V W, CHANG K C C. A comprehensive survey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637. DOI:10.1109/TKDE. 2018.2807452
doi: 10.1109/TKDE. 2018.2807452
3 祁志卫, 王笳辉, 岳昆, 等. 图嵌入方法与应用:研究综述[J]. 电子学报, 2020, 48(4): 808-818. DOI:10.3969/j.issn.0372-2112.2020.04.023
QI Z W, WANG J H, YUE K, et al. Methods and applications of graph embedding: A survey[J]. Acta Electronica Sinica, 2020, 48(4): 808-818. DOI:10. 3969/j.issn.0372-2112.2020.04.023
doi: 10. 3969/j.issn.0372-2112.2020.04.023
4 CUI P, WANG X, PEI J, et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(5): 833-852. DOI:10.1109/TKDE.2018.2849727
doi: 10.1109/TKDE.2018.2849727
5 CHEN F X, WANG Y C, WANG B, et al. Graph representation learning: A survey[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9: e15. DOI:10.1017/ATSIP.2020.13
doi: 10.1017/ATSIP.2020.13
6 OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 1105-1114. DOI:10. 1145/2939672.2939751
doi: 10. 1145/2939672.2939751
7 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学(信息科学), 2017, 47(8): 980-996. DOI:10. 1360/N112017-00145
TU C C, YANG C, LIU Z Y, et al. Network representation learning: An overview[J]. SCIENTIA SINICA Informations, 2017, 47(8): 980-996. DOI:10.1360/N112017-00145
doi: 10.1360/N112017-00145
8 ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. DOI:10.1126/science. 290.5500.2323
doi: 10.1126/science. 290.5500.2323
9 TANG J, QU M, WANG M Z, et al. LINE: Large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Florence: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. DOI:10.1145/2736277.2741093
doi: 10.1145/2736277.2741093
10 AHMED A, SHERVASHIDZE N, NARAYANAMURTHY S, et al. Distributed large-scale natural graph factorization[C]// Proceedings of the 22th International Conference on World Wide Web. Rio de Janeiro: Association for Computing Machinery, 2013: 37-48. DOI:10.1145/2488388. 2488393
doi: 10.1145/2488388. 2488393
11 HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]// Advances in Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 1025-1035.
12 JOLLIFFE I, CADIMA J. Principal component analysis: A review and recent developments[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150202. DOI:10.1098/rsta. 2015.0202
doi: 10.1098/rsta. 2015.0202
13 UMEYAMA S. An eigendecomposition approach to weighted graph matching problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703. DOI:10.1109/34.6778
doi: 10.1109/34.6778
14 YE J P, JANARDAN R, LI Q. Two-dimensional linear discriminant analysis[C]// Proceedings of the 17th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2004: 1569-1576. doi:10.1145/1015330.1015348
doi: 10.1145/1015330.1015348
15 ROBINSON S L, BENNETT R J. A typology of deviant workplace behaviors: A multidimensional scaling study[J]. Academy of Management Journal, 1995, 38(2): 555-572. DOI:10.5465/256693
doi: 10.5465/256693
16 SAUL L K, WEINBERGER K Q, SHA F, et al. Spectral methods for dimensionality reduction[C]// Semi-Supervised Learning. Cambridge: MIT Press, 2006. DOI:10.7551/mitpress/9780262033 589.003.0016
doi: 10.7551/mitpress/9780262033 589.003.0016
17 DEMERS D, COTTRELL G. Non-linear dimensionality reduction[C]// Proceedings of the 5th International Conference on Neural Information Processing Systems. San Francisco: Morgan Kaufmann Publishers Inc, 1992: 580-587.
18 SAMKO O, MARSHALL A D, ROSIN P L. Selection of the optimal parameter value for the Isomap algorithm[J]. Pattern Recognition Letters, 2006, 27(9): 968-979. DOI:10.1016/j.patrec. 2005.11.017
doi: 10.1016/j.patrec. 2005.11.017
19 HARANDI M T, SANDERSON C, SHIRAZI S, et al. Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 2705-2712. DOI:10.1109/CVPR.2011.5995564
doi: 10.1109/CVPR.2011.5995564
20 BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. DOI:10.1162/089976603321780317
doi: 10.1162/089976603321780317
21 SINGH A P, GORDON G J. Relational learning via collective matrix factorization[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2008: 650-658. DOI: 10.1145/1401890.1401969
doi: 10.1145/1401890.1401969
22 ZHANG D K, YIN J, ZHU X Q, et al. Homophily, structure, and content augmented network representation learning[C]// 16th International Conference on Data Mining (ICDM). Piscataway: IEEE, 2016: 609-618. DOI:10.1109/ICDM.2016.0072
doi: 10.1109/ICDM.2016.0072
23 CAO S S, LU W, XU Q K. GraRep: Learning graph representations with global structural information[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne: Association for Computing Machinery, 2015: 891-900. DOI:10.1145/2806416.2806512
doi: 10.1145/2806416.2806512
24 KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39-43. DOI:10.1007/BF02289026
doi: 10.1007/BF02289026
25 PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2014: 701-710. DOI:10.1145/2623330.2623732
doi: 10.1145/2623330.2623732
26 WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 1225-1234. DOI:10.1145/2939672.2939753
doi: 10.1145/2939672.2939753
27 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint, arXiv: , 2016.
28 LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[J]. arXiv preprint, arXiv:1801.07606, 2018. DOI:10.48550/arXiv.1801.07606
doi: 10.48550/arXiv.1801.07606
29 GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks[C]// Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 855-864. DOI:10.1145/2939672.2939754
doi: 10.1145/2939672.2939754
30 WANG H W, WANG J, WANG J L, et al. GraphGAN: Graph representation learning with generative adversarial nets[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2508-2515. doi:10.1609/aaai.v32i1.11872
doi: 10.1609/aaai.v32i1.11872
31 YU W C, ZHENG C, CHENG W, et al. Learning deep network representations with adversarially regularized autoencoders[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: Association for Computing Machinery, 2018: 2663-2671. DOI:10.1145/3219819.3220000
doi: 10.1145/3219819.3220000
32 WANG J Z, HUANG P P, ZHAO H, et al. Billion-scale commodity embedding for e-commerce recommendation in Alibaba[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: Association for Computing Machinery, 2018: 839-848. DOI:10.1145/3219819.3219869
doi: 10.1145/3219819.3219869
33 GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680.
34 GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(10): 2222-2232. DOI:10.1109/ TNNLS.2016.2582924
doi: 10.1109/ TNNLS.2016.2582924
35 SUN X G, YIN H Z, LIU B, et al. Heterogeneous hypergraph embedding for graph classification[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Virtual Event: Association for Computing Machinery, 2021: 725-733. DOI:10.1145/3437963.3441835
doi: 10.1145/3437963.3441835
36 ZHEN Y M, WANG J H. Community detection in general hypergraph via graph embedding[J]. Journal of the American Statistical Association, 2022: 1-10. DOI:10.1080/01621459.2021.2002157
doi: 10.1080/01621459.2021.2002157
37 TU K, CUI P, WANG X, et al. Structural deep embedding for hyper-networks[J]. arXiv preprint, arXiv:, 2017. doi:10.1609/aaai.v32i1.11266
doi: 10.1609/aaai.v32i1.11266
38 FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]// Proceedings of the 33th AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019, 33(1): 3558-3565. DOI:10.1609/aaai.v33i01.33013558
doi: 10.1609/aaai.v33i01.33013558
39 ZHOU D Y, HUANG J Y, SCHÖLKOPF B. Learning with hypergraphs: Clustering, classification, and embedding[J]. Advances in Neural Information Processing Systems, 2007, 19: 1601-1608.
40 陈洁, 李锐, 赵姝, 等. 面向图表示社区检测的新型聚类覆盖算法[J]. 电子学报, 2020, 48(9): 1680-1687. DOI:10.3969/j.issn.0372-2112.2020.09. 003
CHEN J, LI R, ZHAO S, et al. A new clustering cover algorithm based on graph representation for community detection[J]. Acta Electronica Sinica, 2020, 48(9): 1680-1687. DOI:10.3969/j.issn.0372-2112.2020.09.003
doi: 10.3969/j.issn.0372-2112.2020.09.003
41 TU K, CUI P, WANG X, et al. Structural deep embedding for hyper-networks[C]// Proceedings of the 32th AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans: AAAI Press, 2018, 53: 426-433. doi:10.1609/aaai.v32i1.11266
doi: 10.1609/aaai.v32i1.11266
42 杨晓慧, 万睿, 张海滨, 等. 基于符号语义映射的知识图谱表示学习算法[J]. 计算机研究与发展, 2018, 55(8): 1773-1784. DOI:10.7544/issn1000-1239. 2018.20180248
YANG X H, WAN R, ZHANG H B, et al. Knowledge map representation learning algorithm based on symbolic semantic mapping[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI:10.7544/issn1000-1239. 2018.20180248
doi: 10.7544/issn1000-1239. 2018.20180248
43 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学(信息科学), 2020, 50(7): 937-956. DOI:10.1360/SSI-2019-0274
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. SCIENTIA SINICA Informations, 2020,50(7): 937-956. DOI:10.1360/SSI-2019-0274
doi: 10.1360/SSI-2019-0274
44 WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]// Proceedings of the 31th AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 203-209. doi:10.1609/aaai.v31i1.10488
doi: 10.1609/aaai.v31i1.10488
45 CHANG S Y, HAN W, TANG J L, et al. Heterogeneous network embedding via deep architectures[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: Association for Computing Machinery, 2015: 119-128. DOI:10. 1145/2783258.2783296
doi: 10. 1145/2783258.2783296
46 CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016: 1145-1152. doi:10.1609/aaai.v30i1.10179
doi: 10.1609/aaai.v30i1.10179
47 WEI X K, XU L C, CAO B K, et al. Cross view link prediction by learning noise-resilient representation consensus[C]// Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, 2017: 1611-1619. DOI:10. 1145/3038912.3052575
doi: 10. 1145/3038912.3052575
48 TANG M F, NIE F P, JAIN R. Capped LP-NORM graph embedding for photo clustering[C]// Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam: Association for Computing Machinery, 2016: 431-435. DOI:10. 1145/2964284. 2967257
doi: 10. 1145/2964284. 2967257
49 ZHANG Q S, WU Y N, ZHU S C. Interpretable convolutional neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8827-8836. DOI:10.1109/CVPR. 2018.00920
doi: 10.1109/CVPR. 2018.00920
50 MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
51 NIKOLENTZOS G, MELADIANOS P, VAZIRGIANNIS M. Matching node embeddings for graph similarity[C]// Proceedings of the 31th AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 2429-2435. doi:10.1609/aaai.v31i1.10839
doi: 10.1609/aaai.v31i1.10839
52 刘华玲, 郑建国, 孙辞海. 基于贪心扰动的社交网络隐私保护研究[J]. 电子学报, 2013,41(8): 1586-1591. DOI:10.3969/ j.issn.0372-2112.2013.08. 021
LIU H L, ZHENG J G, SUN C H. Privacy preserving in social networks based on greedy perturbation[J]. Acta Electronica Sinica, 2013, 41(8): 1586-1591. DOI:10.3969/j.issn.0372-2112. 2013.08.021
doi: 10.3969/j.issn.0372-2112. 2013.08.021
53 YANARDAG P, VISHWANATHAN S V N. Deep graph kernels[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: Association for Computing Machinery, 2015: 1365-1374. DOI:10.1145/2783258.2783417
doi: 10.1145/2783258.2783417
54 KUO C C J, ZHANG M, LI S, et al. Interpretable convolutional neural networks via feedforward design[J]. Journal of Visual Communication and Image Representation, 2019, 60: 346-359. DOI:10. 1016/j.jvcir.2019.03.010
doi: 10. 1016/j.jvcir.2019.03.010
55 RIBEIRO L F R, SAVARESE P H P, FIGUEIREDO D R. Struc2vec: Learning node representations from structural identity[C]// Proceedings of the 23th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. HaliFax: Association for Computing Machinery, 2017: 385-394. DOI:10. 1145/3097983.3098061
doi: 10. 1145/3097983.3098061
56 曹燕, 董一鸿, 邬少清, 等. 动态网络表示学习研究进展[J]. 电子学报, 2020, 48(10): 2047-2059. DOI:10.3969/j.issn.0372-2112.2020.10.024
CAO Y, DONG Y H, WU S Q, et al. Dynamic network representation learning: A review[J]. Acta Electronica Sinica, 2020, 48(10): 2047-2059. DOI:10. 3969/j.issn.0372-2112.2020.10.024
doi: 10. 3969/j.issn.0372-2112.2020.10.024
[1] 郑素佩,靳放,封建湖,林云云. 双曲型方程激波捕捉的物理信息神经网络(PINN)算法[J]. 浙江大学学报(理学版), 2023, 50(1): 56-62.
[2] 吴郁文,林杰. 融合遥感与社会感知数据的城市土地利用分类方法[J]. 浙江大学学报(理学版), 2023, 50(1): 83-95.
[3] 徐圣嘉,苏程,朱孔阳,章孝灿. 基于深度学习的岩石薄片矿物自动识别方法[J]. 浙江大学学报(理学版), 2022, 49(6): 743-752.
[4] 王昱文,杜震洪,戴震,刘仁义,张丰. 基于复合神经网络的多元水质指标预测模型[J]. 浙江大学学报(理学版), 2022, 49(3): 354-362.
[5] 郭毅博, 牛猛, 王海迪, 陈艳华, 薛均晓, 袁玥, 侯立硕, 徐明亮, 潘俊. 基于生成对抗网络的飞机燃油数据缺失值填充方法[J]. 浙江大学学报(理学版), 2021, 48(4): 402-409.
[6] 王小超, 张雷, 余元强, 胡坤, 胡建平. 基于快速神经网络架构搜索的鲁棒图像水印网络算法[J]. 浙江大学学报(理学版), 2021, 48(3): 261-269.
[7] 钱立辉, 王斌, 郑云飞, 章佳杰, 李马丁, 于冰. 基于图像深度预测的景深视频分类算法[J]. 浙江大学学报(理学版), 2021, 48(3): 282-288.
[8] 陈园琼, 邹北骥, 张美华, 廖望旻, 黄嘉儿, 朱承璋. 医学影像处理的深度学习可解释性研究进展[J]. 浙江大学学报(理学版), 2021, 48(1): 18-29.
[9] 傅颖颖, 张丰, 杜震洪, 刘仁义. 融合图卷积神经网络和注意力机制的PM2.5小时浓度多步预测[J]. 浙江大学学报(理学版), 2021, 48(1): 74-83.
[10] 王协, 章孝灿, 苏程. 基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类[J]. 浙江大学学报(理学版), 2020, 47(6): 715-723.
[11] 曾金迪, 张丰, 吴森森, 杜震洪, 刘仁义. 基于空间自回归神经网络模型的空间插值研究[J]. 浙江大学学报(理学版), 2020, 47(5): 572-581.
[12] 李君轶, 任涛, 陆路正. 游客情感计算的文本大数据挖掘方法比较研究[J]. 浙江大学学报(理学版), 2020, 47(4): 507-520.
[13] 周笑天, 张丰, 杜震洪, 刘仁义. 基于神经网络集合预报的台风路径预报优化[J]. 浙江大学学报(理学版), 2020, 47(2): 196-202.
[14] 卢家品, 罗月童, 黄兆嵩, 张延孔, 陈为. 基于排名学习和多源信息的地图匹配方法[J]. 浙江大学学报(理学版), 2020, 47(1): 27-35.
[15] 刘尧, 王颖志, 王立君, 张丰, 杜震洪, 刘仁义. 交通事故的时空热点分析[J]. 浙江大学学报(理学版), 2020, 47(1): 52-59.