Please wait a minute...
浙江大学学报(理学版)  2020, Vol. 47 Issue (5): 572-581    DOI: 10.3785/j.issn.1008-9497.2020.05.009
地球科学     
基于空间自回归神经网络模型的空间插值研究
曾金迪1,2, 张丰1,2, 吴森森1,2, 杜震洪1,2, 刘仁义1,2
1.浙江大学 浙江省资源与环境信息系统重点实验室,浙江 杭州 310028
2.浙江大学 地理信息科学研究所,浙江 杭州 310027
Spatial interpolation based on spatial auto-regressive neural network
ZENG Jindi1,2, ZHANG Feng1,2, WU Sensen1,2, DU Zhenhong1,2, LIU Renyi1,2
1.Zhejiang Provincial Key Lab of GIS, Zhejiang University, Hangzhou 310028, China
2.Department of Geographic Information Science, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4473 KB)   HTML  
摘要: 基于空间距离计算的空间自相关权重系数是经典空间插值方法的核心,然而由于空间距离与自相关权重之间复杂的非线性关系,反距离权重(IDW)法和克里金(Kriging)法等传统空间插值方法,在求解权重精准解时存在一定的局限性。由此,利用神经网络超强的非线性拟合能力,通过融合神经网络与空间自回归方法,建立了空间自回归神经网络(SARNN)模型,实现了空间自相关权重的精准计算并将其应用于空间插值研究。为验证SARNN模型的有效性和可行性,采用两类模拟数据及海洋环境数据进行交叉验证,并与IDW法和Kriging法进行精度对比。实验结果表明,SARNN法显著提升了R2、RMSE、MAE、MAPE等统计指标,插值结果明显优于IDW法和Kriging法;同时,SARNN法在空间插值中对突变数据和极值数据的预测较为准确,改善了传统插值方法空间平滑过渡差,易出现“牛眼”、锯齿现象等问题,显著提高了空间插值结果的准确性与合理性。SARNN法提供了一种空间插值的新思路,具有较为广泛的应用价值。
关键词: 空间插值空间权重神经网络    
Abstract: The calculation of the spatial autocorrelation weight based on spatial distance is the core of the classical spatial interpolation method. However, due to the complex nonlinear relationship between spatial distance and the autocorrelation weight, traditional spatial interpolation methods such as inverse distance weighting (IDW) and the Kriging method have limitations on the accurate weight calculation. In this paper,based on the strong nonlinear fitting ability of neural network, we establish a spatial auto-regressive neural network (SARNN) model by combining neural network and spatial autoregressive method, and realize the accurate calculation of spatial autocorrelation weights. In order to verify the validity and feasibility of the SARNN model, we use two types of simulation data and marine environment data for cross-validation, and compare the accuracy with that of the IDW and Kriging. The results show that the performance SARNN is significantly better than IDW and Kriging, regarding all the statistical indicators such as R2, RMSE, MAE and MAPE. At the same time, SARNN predicts the mutation data and extremum more accurately and improves the problems in traditional interpolation method such as low spatial smooth transition, “bull's eye” and sawtooth phenomenon. Therefore, SARNN provides a new idea of spatial interpolation and has a wider application potential.
Key words: neural network    spatial weight    spatial interpolation
收稿日期: 2019-10-14 出版日期: 2020-09-25
CLC:  P208  
基金资助: 国家重点研发计划专项(2018YFB0505000,2016YFC0803105);国家自然科学基金资助项目(41671391,41922043,41871287).
通讯作者: ORCID: http: //orcid.org/0000-0003-1475-8480,E-mail:zfcarnation @zju.edu.cn.   
作者简介: 曾金迪(1996—),ORCID: https://orcid.org/0000-0003-0616-3495,男,硕士,主要从事时空数据统计和建模研究.。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾金迪
张丰
吴森森
杜震洪
刘仁义

引用本文:

曾金迪, 张丰, 吴森森, 杜震洪, 刘仁义. 基于空间自回归神经网络模型的空间插值研究[J]. 浙江大学学报(理学版), 2020, 47(5): 572-581.

ZENG Jindi, ZHANG Feng, WU Sensen, DU Zhenhong, LIU Renyi. Spatial interpolation based on spatial auto-regressive neural network. Journal of Zhejiang University (Science Edition), 2020, 47(5): 572-581.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2020.05.009        https://www.zjujournals.com/sci/CN/Y2020/V47/I5/572

1 FOTHERINGHAM A S, ROGERSON P A. The SAGE Handbook of Spatial Analysis[M]. London:Sage Publication, 2008.
2 TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(2):234-240. DOI: 10.2307/143141
3 GOODCHILD M F, ANSELIN L, DEICHMANN U. A framework for the areal interpolation of socioeconomic data[J]. Environment & Planning A, 1993, 25(3): 383-397. DOI: 10.1068/a250383
4 GOOVAERTS P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. Journal of Hydrology, 2000, 228(1): 113-129. DOI: 10.1016/S0022-1694(00)00144-X
5 ZHUANG L. Spatial interpolation methods of daily weather data in Northeast China[J]. Quarterly Journal of Applied Meteorology,2003, 14(5) : 605⁃615. DOI: 10.3969/j.issn.1001-7313.2003.05.011
6 CRESSIE N. The origins of Kriging[J]. Mathematical Geology, 1990, 22(3): 239-252. DOI: 10.1007/bf00889887
7 JIN L, HEAP A D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J]. Ecological Informatics,2011, 6(3): 228-241.
8 ZHANG S, ZHANG J, YIN L, et al. A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds[J]. Environmental Engineering Research,2016, 21(3): 226-232.
9 QIAO P, LI P, CHENG Y, et al. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites[J]. Environmental Geochemistry and Health, 2019, 41(6): 2709-2730. DOI: 10.1007/s10653-019-00328-0
10 丁卉,余志,徐伟嘉,等. 3种区域空气质量空间插值方法对比研究[J]. 安全与环境学报, 2016, 16(3): 309-315. DOI: 10.13637/j.issn.1009-6094.2016.03.061 DING H, YU Z, XU W J, et al. Comparative study of the three spatial interpolation methods for the regional air quality evaluation[J]. Journal of Safety and Environment, 2016, 16(3): 309-315. DOI: 10.13637/j.issn.1009-6094.2016.03.061.
11 ARIF M , HUSSAIN I , HUSSAIN J , et al. GIS-based inverse distance weighting spatial interpolation technique for fluoride distribution in south west part of Nagaur district, Rajasthan[J]. Cogent Environmental Science,2015, 1(1):1038944. DOI: 10.1080/23311843.2015.1038944
12 BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Spatial nonstationarity and autoregressive models[J]. Environment & Planning A, 1998, 30(6): 957-973. DOI: 10.1068/a300957
13 WU B, LI R, HUANG B. A geographically and temporally weighted autoregressive model with application to housing prices[J]. International Journal of Geographical Information Science, 2014, 28(5): 1186-1204. DOI: 10.1080/13658816.2013.878463
14 李章义,陈媛. Kriging插值中不同变异函数对城市环境场强重构的影响[J]. 中国无线电, 2017(7): 51-53. DOI: 10.3969/j.issn.1672-7797.2017.07.034 LI Z Y, CHEN Y. The influence of different variogram in Kriging on the reconstruction of urban environmental field strength[J]. China Radio, 2017(7):51-53. DOI: 10.3969/j.issn.1672-7797.2017.07.034
15 SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks,2015, 61: 85-117. DOI: 10.1016/j.neunet.2014.09.003
16 李纯斌,刘永峰,吴静,等. 基于BP神经网络和支持向量机的降水量空间插值对比研究——以甘肃省为例[J]. 草原与草坪, 2018, 38(4): 12-19. DOI: 10.3969/j.issn.1009-5500.2018.04.002 LI C B, LIU Y F, WU J, et al. Comparative study on spatial interpolation based on BP neural network and support vector machine-Taking Gansu province as an example [J]. Grassland and Turf,2018, 38(4): 12-19. DOI: 10.3969/j.issn.1009-5500.2018.04.002.
17 邱云翔,张潇潇,刘国东. 粒子群算法优化BP在降雨空间插值中的应用[J]. 长江科学院院报, 2017, 34(12): 28-32. DOI: 10.11988/ckyyb.20160837 QIU Y X, ZHANG X X, LIU G D. Application of PSO–BP in rainfall spatial interpolation[J]. Journal of Yangtze River Scientific Research Institute,2017, 34(12): 28-32. DOI: 10.11988/ckyyb.20160837
18 SOARES S A F , NETO G S , ROISENBERG M. Improving the incremental Gaussian mixture neural network model for spatial interpolation and geostatistical simulation[C]// 2016 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2016. DOI: 10.1109/IJCNN.2016.7727511
19 ZHU D, CHENG X, ZHANG F, et al. Spatial interpolation using conditional generative adversarial neural networks[J]. International Journal of Geographical Information Science,2020, 34(4): 735-758. DOI: 10.1080/13658816.2019.1599122.
20 SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014, 15(1): 1929-1958.
21 HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co‒adaptation of feature detectors[J]. Computer Science,2012, 3(4): 212-223. DOI: 10.9774/GLEAF.978-1-909493-38-4_2
22 NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//The 27th International Conference on Machine Learning (ICML-10). Haifa: ICML,2010: 807-814.
23 HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on imageNet classification[C]// 2015 IEEE International Conference on Computer Vision(ICCV).Washington,DC:IEEE Computer Society,2015: 1026-1034. DOI: 10.1109/ICCV.2015.123
24 IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167.[2015-03-02].http://arXir.org/pdf/1502.03167.pdf.
25 HARRIS P. A simulation study on specifying a regression model for spatial data: Choosing between autocorrelation and heterogeneity effects[J]. Geographical Analysis,2019, 51(2): 151-181. DOI: 10.1111/gean.12163
[1] 郑素佩,靳放,封建湖,林云云. 双曲型方程激波捕捉的物理信息神经网络(PINN)算法[J]. 浙江大学学报(理学版), 2023, 50(1): 56-62.
[2] 吴郁文,林杰. 融合遥感与社会感知数据的城市土地利用分类方法[J]. 浙江大学学报(理学版), 2023, 50(1): 83-95.
[3] 刘华玲,张国祥,马俊. 图嵌入算法研究进展[J]. 浙江大学学报(理学版), 2022, 49(4): 443-456.
[4] 王昱文,杜震洪,戴震,刘仁义,张丰. 基于复合神经网络的多元水质指标预测模型[J]. 浙江大学学报(理学版), 2022, 49(3): 354-362.
[5] 郭毅博, 牛猛, 王海迪, 陈艳华, 薛均晓, 袁玥, 侯立硕, 徐明亮, 潘俊. 基于生成对抗网络的飞机燃油数据缺失值填充方法[J]. 浙江大学学报(理学版), 2021, 48(4): 402-409.
[6] 王小超, 张雷, 余元强, 胡坤, 胡建平. 基于快速神经网络架构搜索的鲁棒图像水印网络算法[J]. 浙江大学学报(理学版), 2021, 48(3): 261-269.
[7] 王协, 章孝灿, 苏程. 基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类[J]. 浙江大学学报(理学版), 2020, 47(6): 715-723.
[8] 周笑天, 张丰, 杜震洪, 刘仁义. 基于神经网络集合预报的台风路径预报优化[J]. 浙江大学学报(理学版), 2020, 47(2): 196-202.
[9] 卢家品, 罗月童, 黄兆嵩, 张延孔, 陈为. 基于排名学习和多源信息的地图匹配方法[J]. 浙江大学学报(理学版), 2020, 47(1): 27-35.
[10] 刘尧, 王颖志, 王立君, 张丰, 杜震洪, 刘仁义. 交通事故的时空热点分析[J]. 浙江大学学报(理学版), 2020, 47(1): 52-59.
[11] 张贝娜, 冯震华, 张丰, 杜震洪, 刘仁义, 周芹. 基于时空多视图BP神经网络的城市空气质量数据补全方法研究[J]. 浙江大学学报(理学版), 2019, 46(6): 737-744.
[12] 潘水洋, 刘俊玮, 王一鸣. 基于神经网络的股票收益率预测研究[J]. 浙江大学学报(理学版), 2019, 46(5): 550-555.
[13] 陈善雄, 王小龙, 韩旭, 刘云, 王明贵. 一种基于深度学习的古彝文识别方法[J]. 浙江大学学报(理学版), 2019, 46(3): 261-269.
[14] 郑锐, 钱文华, 徐丹, 普园媛. 基于卷积神经网络的刺绣风格数字合成[J]. 浙江大学学报(理学版), 2019, 46(3): 270-278.
[15] 堵锡华, 王超. 乌药化学成分结构参数与色谱保留时间的关系[J]. 浙江大学学报(理学版), 2018, 45(6): 721-727.