Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (5): 579-583    DOI: 10.3785/j.issn.1008-9497.2019.05.010
化学     
载体对负载型Zn催化剂上愈创木酚加氢脱氧(HDO)性能的影响
陈辰, 费金华
浙江大学 化学系,浙江省应用化学重点研究实验室, 浙江 杭州 310028
Influence of supports on Zn-based catalyst for hydrodeoxygenation of guaiacol.
CHEN Chen, FEI Jinhua
Key Laboratory of Applied Chemistry of Zhejiang Province,Department of Chemistry, Zhejiang University, Hangzhou 310028, China
 全文: PDF(459 KB)   HTML  
摘要: 以SiO2、Al2O3和HZSM-5、Re-HY分子筛为载体,以Zn为主要活性成分,研究了不同类型载体以及不同Si/Al比的HZSM-5分子筛负载Zn催化剂的愈创木酚加氢脱氧(HDO)反应性能。结果表明,催化剂的酸性是影响其加氢脱氧活性和产物选择性的主要因素,并且愈创木酚加氢脱氧转化为环己烷、BTX(苯、甲苯、二甲苯)等完全脱氧产物的活性,与催化剂的总酸量、酸中心强度具有一定的相关性。
关键词: 愈创木酚加氢脱氧Zn分子筛催化剂    
Abstract: This work aims at investigating the performance of Zn catalysts supported by SiO2, Al2O3, Re-HY and different Si/Al ratios of HZSM-5 for guaiacol hydrodeoxygenation (HDO). The results show that the acidity of the catalyst is the main factor affecting the HDO activity and product selectivity, and both the HDO activity of guaiacol converting to cyclohexane, BTX (benzene, toluene, xylene) are correlated with the total amount of acid sites and the strength of the acid sites over the catalyst to some extent.
Key words: guaiacol    hydrodeoxygenation    Zn    zeolite    catalyst
收稿日期: 2018-12-25 出版日期: 2019-09-25
CLC:  O643.38  
基金资助: 国家重点研发计划项目(2018YFB1501404).
通讯作者: ORCID: http://orcid.org/0000-0003-1369-5351     E-mail: jhfei@zju.edu.cn.
作者简介: 陈辰(1994—),ORCID: http://orcid.org/0000-0002-0394-976X,男,硕士, 主要从事生物质催化转化研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈辰
费金华

引用本文:

陈辰, 费金华. 载体对负载型Zn催化剂上愈创木酚加氢脱氧(HDO)性能的影响[J]. 浙江大学学报(理学版), 2019, 46(5): 579-583.

CHEN Chen, FEI Jinhua. Influence of supports on Zn-based catalyst for hydrodeoxygenation of guaiacol.. Journal of ZheJIang University(Science Edition), 2019, 46(5): 579-583.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.05.010        https://www.zjujournals.com/sci/CN/Y2019/V46/I5/579

1 CHENGK, ZHOUW, KANGJ C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347.DOI:10.1016/j.chempr.2017.05.007
2 LIUW J, JIANGH, YUH Q. Thermochemical conversion of lignin to functional materials: A review and future directions [J]. Green Chemistry, 2015, 17(11): 4888-4907. DOI:10.1039/c5gc01054c
3 DANIELA R, JOSHUAA S, JACKR F, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds[J]. Green Chemistry, 2014, 16(2): 454-490.
4 BUI V N, LAURENTID, DELICHÈREP, et al. Hydrodeoxygenation of guaiacol. Part II: Support effect for CoMoS catalysts on HDO activity and selectivity [J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 246-255.
5 SUM J, KARIMA, ZHANGH, et al. Carbon-supported bimetallic PdFe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. Journal of Catalysis, 2013, 306: 47-57.DOI:10.1016/j.jcat.2013.05.020
6 OLCESER N, BSTTAHARM, PETITIEAND, et al. Hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst[J]. Applied Catalysis B: Environmental, 2012, 115/116: 63-73.
7 PRASOMSRIT, SHETTYM, MURUGAPPANK, et al. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures[J]. Energy & Environmental Science, 2014, 7(8): 2660-2669. DOI:10.1039/c4ee00890a
8 LIX, LUOX Y, JINY B, et al. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 3762-3797.DOI:10.1016/j.rser.2017.10.091
9 NIUX, GAOJ, MIAOQ, et al. Influence of preparation method on the performance of Zn containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197: 252-261.DOI:10.1016/j.micromeso.2014.06.027
10 BIK H, MAY Y, MOW L, et al. Effect of isobutane content on the aromatic reaction performance of n-Butane on Zn / HZSM-5 catalysts[J]. Journal of Molecular Catalysis (China), 2018, 32(1): 35-45.
11 LIB, LIS, LIN, et al. Structure and acidity of REHY zeolite in FCC catalyst[J]. Chinese Journal of Catalysis, 2005, 26(4): 301-306.
[1] 陈韩,叶雨航,王晴,叶育川,蒋越,彭东,徐婧,臧绍宏,莫流业. 球磨法制备的Cu基催化剂应用于乙酸乙酯催化燃烧反应的研究[J]. 浙江大学学报(理学版), 2023, 50(4): 472-482.
[2] 常傲, 陈爱苹, 楼辉, 陈平. 高水热稳定性加氢脱氧催化剂Pt/Ce0.5M0.5O2(M=Zr,Ti)的制备及其性能研究[J]. 浙江大学学报(理学版), 2018, 45(6): 714-720.
[3] 张云丽, 朱自强, 李晓川, 刘奎立, 巫洪章, 周小东. Cr掺杂LiZnAs稀磁半导体的第一性原理研究[J]. 浙江大学学报(理学版), 2018, 45(4): 429-435.
[4] 张群, 鲍玥, 周旻昀, 史宇滨, 邹骏华, 万先凯, 史惠祥. 高效BiOI/BiOBr可见光催化剂的制备、性能及机理研究[J]. 浙江大学学报(理学版), 2017, 44(4): 472-479.
[5] 范浙永, 刘涛, 包秀秀, 费金华. 不同结构C8烃在HZSM-5分子筛上的吸附与裂化研究[J]. 浙江大学学报(理学版), 2016, 43(4): 411-415.
[6] 钟少锋, 区琼荣. 植酸修饰聚乙烯醇纤维膜负载钯催化剂的制备及其性能研究[J]. 浙江大学学报(理学版), 2016, 43(3): 321-324.
[7] 王枫濂, 楼 辉, 陈 平. 低碳醇用于香兰素加氢脱氧催化反应的试验[J]. 浙江大学学报(理学版), 2016, 43(1): 29-34.
[8] 张引弟,范浙永,楼辉. 不同分子筛催化剂对生物质快速热裂解气的原位催化转化的比较[J]. 浙江大学学报(理学版), 2016, 43(1): 18-22.
[9] 何莉莉, 秦 玉, 楼 辉, 陈 平. 以活性炭为载体的碳化钼催化剂在香兰素加氢脱氧反应中的作用[J]. 浙江大学学报(理学版), 2015, 42(6): 631-636.
[10] 郭红梅, 薛 波, 高园园, 陈 敏, 郑小明. 不锈钢基体上ZSM-5分子筛膜的制备及影响因素分析[J]. 浙江大学学报(理学版), 2015, 42(6): 721-725.
[11] 曹丹艳, 陈 平, 楼 辉, HONG Haiping. 多壁碳纳米管负载的碳化钼催化剂在玉米油加氢脱氧反应中的应用[J]. 浙江大学学报(理学版), 2015, 42(6): 637-643.
[12] 黄士力,房江华,徐 晖,章哲彦 . Fe-Al-络合催化马来酸酐与环氧氯丙烷 共聚合特征研究 [J]. 浙江大学学报(理学版), 2000, 27(2): 175-178.
[13] 沈杭燕 唐新硕 . TiO2 粉末催化剂光催化降解室内 空气中有机污染物 [J]. 浙江大学学报(理学版), 1998, 25(4): 55-58.
[14] 梅明华,楼 辉. 中孔分子筛MCM-41 的合成与表征[J]. 浙江大学学报(理学版), 1998, 25(2): 62-65.
[15] 朱波 衷贤鑫 金松寿 王翔. Pt-Pd /y-A120.催化剂氧化性能的研究‘[J]. 浙江大学学报(理学版), 1995, 22(1): 63-67.