Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (3): 295-301    DOI: 10.3785/j.issn.1008-9497.2019.03.005
数学与计算机科学     
关于Neuman-Sándor平均的一些特殊组合不等式
徐仁旭1, 徐会作2, 钱伟茂3
1.浙江建设职业技术学院 人文与信息系,浙江 杭州 311231
2.温州广播电视大学 教师教学发展中心,浙江;温州 325000
3.湖州广播电视大学 远程教育学院,浙江 湖州 313000
On some special combination inequalities for Neuman-Sándor mean
Renxu XU1, Huizuo XU2, Weimao QIAN3
1.Department of Humanity and Information,Zhejiang College of Construction,Hangzhou 311231,China
2.Teachers’ Teaching Development Center, Wenzhou Broadcast and TV University, Wenzhou 325000, Zhejiang Province,China
3.School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, Zhejiang Province,China
 全文: PDF(439 KB)   HTML  
摘要: 研究了Neuman-Sándor平均NS(a,b)关于调和平均H(a,b)、算术平均A(a,b)、二次平均Q(a,b)若干特殊组合的序关系,给出最佳参数α123141234∈(0,1),使得下列双向不等式:$\sqrt{a_{1}Q^{2}(a,b)+(1-a_{1})A^{2}(a,b)}< NS(a,b)<\sqrt{\beta_{1}Q^{2}(a,b)+(1-\beta_{1})A^{2}(a,b),}\\ \sqrt{[a_{2}Q(a,b)+(1-a_{2})A(a,b)]A(a,b)}< NS(a,b)<\sqrt{[\beta_{2}Q(a,b)+(1-\beta_{2})A(a,b)]A(a,b),}\\ \sqrt{a_{e}Q^{2}(a,b)+(1-a_{3})H^{2}(a,b)}< NS(a,b)<\sqrt{\beta_{3}Q^{2}(a,b)+(1-\beta_{3})H^{2}(a,b),}\\ \sqrt{[a_{4}Q(a,b)+(1-a_{4})H(a,b)]A(a,b)}< NS(a,b)<\sqrt{[\beta_{4}Q(a,b)+(1-\beta_{4})H(a,b)]A(a,b),}$对所有不同的正实数a和b均成立。
关键词: Neuman-Sándor平均调和平均算术平均二次平均    
Abstract: In the article, we deal with the order relation on the Neuman-Sándor mean NS(a,b) with respect to the special combinations of the harmonic mean H(a,b),arithmetic mean A(a,b) and quadratic mean Q(a,b) ,and present the best possible parameters α123141234∈(0,1) such that the double inequalities $\sqrt{a_{1}Q^{2}(a,b)+(1-a_{1})A^{2}(a,b)}< NS(a,b)<\sqrt{\beta_{1}Q^{2}(a,b)+(1-\beta_{1})A^{2}(a,b),}\\ \sqrt{[a_{2}Q(a,b)+(1-a_{2})A(a,b)]A(a,b)}< NS(a,b)<\sqrt{[\beta_{2}Q(a,b)+(1-\beta_{2})A(a,b)]A(a,b),}\\ \sqrt{a_{e}Q^{2}(a,b)+(1-a_{3})H^{2}(a,b)}< NS(a,b)<\sqrt{\beta_{3}Q^{2}(a,b)+(1-\beta_{3})H^{2}(a,b),}\\ \sqrt{[a_{4}Q(a,b)+(1-a_{4})H(a,b)]A(a,b)}< NS(a,b)<\sqrt{[\beta_{4}Q(a,b)+(1-\beta_{4})H(a,b)]A(a,b),}$ hold for all a,b>0 with a≠b, where H(a,b), A(a,b), Q(a,b) and NS(a,b) are the harmonic, arithmetic, quadratic and Neuman-Sándor means of a and b, respectively.
Key words: Neuman-Sàndor mean    harmonic mean    arithmetic mean    quadratic mean
收稿日期: 2018-08-27 出版日期: 2019-05-25
CLC:  O174.6  
基金资助: 国家自然科学基金资助项目(61673169, 61374086, 11371125, 11401191);浙江广播电视大学科学研究课题(XKT-17Z04,XKT-17G26);浙江省教育厅2017年度高校访问学者“教师专业发展项目”(FX2017108,FX2017084).
作者简介: 徐仁旭(1980—),https://orcid.org/0000-0003-0383-7917,男,硕士,讲师,主要从事解析不等式研究,E-mail:55444765@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐仁旭
徐会作
钱伟茂

引用本文:

徐仁旭, 徐会作, 钱伟茂. 关于Neuman-Sándor平均的一些特殊组合不等式[J]. 浙江大学学报(理学版), 2019, 46(3): 295-301.

Renxu XU, Huizuo XU, Weimao QIAN. On some special combination inequalities for Neuman-Sándor mean. Journal of Zhejiang University (Science Edition), 2019, 46(3): 295-301.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.03.005        https://www.zjujournals.com/sci/CN/Y2019/V46/I3/295

1 NEUMANE, SáNDORJ. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2):253-266.
2 NEUMANE, SáNDORJ. On the Schwab-Borchardt meanⅡ[J]. Mathematica Pannonica, 2006, 17(1): 49-59.
3 LIY M, LONGB Y, CHUY M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean[J]. Journal of Mathematical Inequalities, 2012, 6(4): 567-577.doi:10.7153/jmi-06-54
4 CHUY M, LONGB Y, GONGW M, et al. Sharp bounds for Seiffert and Neuman- Sándor means in terms of generalized logarithmic means[J]. Journal of Inequalities and Applications, 2013, Article 10.doi:10.1186/1029-242x-2013-10
5 CHUY M , LONGB Y. Bounds of the Neuman-Sándor mean using power and identic means[J]. Abstract and Applied Analysis, 2013, Article ID 832591.doi:10.1155/2013/832591
6 CHUY M, WANGM K,LIUB Y. Sharp inequalities for the Neuman-Sándor mean in terms of arithmetic and contra-harmonic means[J]. Revue D’Analyse Numérique Et De Théorie De L’ Approximation, 2013, 42(2):115-120.
7 QIANW M, CHUY M. On certain inequalities for Neuman-Sándor mean[J].Abstract and Applied Analysis, 2013, Article ID 790783.doi:10.1155/2013/790783
8 ZHANGF, CHUY M ,QIANW M. Bounds for the arithmetic mean in terms of the Neuman-Sándor and other bivariate means[J]. Journal of Applied Mathematics, 2013, Article ID 582504.doi:10.1155/2013/582504
9 HEZ Y, QIANW M, JIANGY L, et al. Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of Contraharmonic mean[J]. Abstract and Applied Analysis, 2013, Article ID 903982.doi:10.1155/2013/903982
10 XIAW F, CHUY M. Optimal inequalities between Neuman-Sándor, centroidal and harmonic means[J]. Journal of Mathematical Inequalities, 2013, 7(4): 593-600.doi:10.7153/jmi-07-56
11 YANGZ H. Estimates for Neuman-Sándor mean by power means and their relative errors[J]. Journal of Mathematical Inequalities, 2013, 7(4): 711-726.doi:10.7153/jmi-07-65
12 JIANGW D, QIF. Sharp bounds for the Neuman-Sándor mean in terms of the power and Contraharmonic means[J]. Cogent Mathematics, 2015, 2 (1): 995951.doi:10.1080/23311835.2014.995951
13 HUANGH Y, WANGN , LONGB Y. Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means[J]. Journal of Inequalities and Applications, 2016:14.doi:10.1186/s13660-015-0955-2
14 CHENJ J , LEIJ J ,LONGB Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means[J]. Journal of Inequalities and Applications, 2017(1):251.doi:10.1186/s13660-017-1516-7
15 LEIJ J ,CHENJ J , LONGB Y. Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean[J]. Journal of Mathematical Inequalities, 2018, 12(2): 365-377.doi:10.7153/jmi-2018-12-27
16 WANGM K, CHUY M, QIUY F, et al. An optimal power mean inequality for the complete elliptic integrals[J]. Applied Mathematics Letters, 2011, 24(6):887-890.doi:10.1016/j.aml.2010.12.044
17 WANGM K, QIUS L, CHUY M, et al. Generalized Hersch-Pfluger distortion Function and complete elliptic integrals[J]. Journal Mathematical Analysis Applysis and Applications, 2012, 385(1): 221-229.doi:10.1016/j.jmaa.2011.06.039
18 ZHAOT H, WANGM K, ZHANGW, et al. Quadratic transformation inequalities for Gaussian hypergeometric function[J]. Journal of Inequalities Applications, 2018: Article 251.doi:10.1186/s13660-018-1848-y
19 WANGM K, QIUS L, CHUY M. Infinite series formula for Hubner upper bound function with applications to Hersch-Pfluger distortion function[J]. Mathematical Inequalities and Applications, 2018, 21(3): 629-648.doi:10.7153/mia-2018-21-46
20 XUH Z, CHUY M, QIANW M. Sharp bounds for Sandor-Yang means in terms of arithmetic and contra-harmonic means[J]. Journal of Inequalities and Applications, 2018, Article 127.doi:10.1186/s13660-018-1719-6
21 WANGM K, LIY M, CHUY M. Inequalities and infinite product formula for Ramanujan generalized modular equation function[J]. Ramanujan Journal, 2018, 46(1):189-200.doi:10.1007/s11139-017-9888-3
22 WANGM K, CHUY M. Landen inequalities for a class of hypergeometric functions with applications[J].Mathematical Inequalities and Applications, 2018, 21(2):521-537.doi:10.7153/mia-2018-21-38
23 YANGZ H, QIANW M, CHUY M, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind[J]. Journal Mathematical Analysis Applications, 2018, 462(2): 1714-1726.doi:10.1016/j.jmaa.2018.03.005
24 QIANW M, CHUY M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters[J]. Journal Inequalities and Applications, 2017(1): Article 274.doi:10.1186/s13660-017-1550-5
25 YANGZ H,QIANW M, CHUY M , et al. On rational bounds for the gamma function[J].Journal of Inequalities and Applications,2017(1): 210.doi:10.1186/s13660-017-1484-y
26 WANGM K, CHUY M. Refinements of transformation inequalities for zero-balanced hypergeometric functions[J]. Acta Mathematica Scientia, 2017, 37B(3):607-622.doi:10.1016/s0252-9602(17)30026-7
27 CHUY M , QIUY F ,WANGM K. Holder mean inequalities for the complete elliptic integrals[J]. Integral Transform Specical Functions, 2012, 23(7):521-527.doi:10.1080/10652469.2011.609482
28 CHUY M, WANGM K, JIANGY P , et al. Concavity of the complete elliptic integrals of the second kind with respect to Holder mean[J]. Journal of Mathematical Analysis and Applications, 2012, 395(2): 637-642.doi:10.1016/j.jmaa.2012.05.083
29 CHUY M ,WANGM K. Optimal Lehmer mean bounds for the Toader mean[J]. Results in Mathematics, 2012, 61(3/4): 223-229.doi:10.1007/s00025-010-0090-9
30 CHUY M, WANGM K, QIUS L. Optimal combinations bounds of root-square and arithmetic means for Toader mean[J]. Proceedings-Mathematical Sciences, 2012, 122(1): 41-51.doi:10.1007/s12044-012-0062-y
31 YANGZ H. Sharp power means bounds for Neuman-Sándor mean[J]. Mathematics Subject Classification, 2012, arXiv:1208.0895v1.doi:10.1155/2015/172867
32 NEUMANE. A note on a certain bivariate mean[J]. Journal of Mathematical Inequalities, 2012, 6(4):637-643.doi:10.7153/jmi-06-62
33 ZHAOT H, CHUY M, LIUB Y. Optimal bounds for Neuman-Sándor mean in terms of the convex Combinations of harmonic, geometric, quadratic, and contraharmonic means[J]. Abstract and Applied Analysis, 2012, Article ID 302635.doi:10.1155/2012/302635
34 VAMANAMURTHYM K, VUORINENM. Inequalities for means[J]. Journal of Mathematical Analysis and Applications, 1994, 183(1):155-166.doi:10.1006/jmaa.1994.1137
35 ANDERSONG D, VAMANAMURTHYM K, VUORINENM K. Conformal Invariants. Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts[M]. New York: John Wiley & Sons,1997.
36 RAHMANQ I. On the monotonicity of certain functionals in the theory of analytic functions[J]. Canadian Mathematical Bulletin, 1967: 723-729.doi:10.4153/cmb-1967-074-9
37 SIMI?S, VUORINENM. Landen inequalities for zero-balanced hyper-geometric function[J]. Abstract and Applied Analysis, 2012, Article ID 932061.
[1] 徐会作, 钱伟茂. Toader-Qi平均与其他二元平均的几个确界[J]. 浙江大学学报(理学版), 2017, 44(5): 526-530.