Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (3): 288-294    DOI: 10.3785/j.issn.1008-9497.2019.03.004
文化计算     
融合形态学连通域和CV模型的民族服饰图案纹样元素分割方法
侯小刚1, 陈洪2, 赵海英2
1.北京邮电大学 网络技术研究院,北京 100876
2.北京邮电大学 计算机学院,北京 100876
The national costume pattern elements segmentation by incorporating morphology connected component and CV model
Xiaogang HOU1, Hong CHEN2, Haiying ZHAO2
1.Institute of Network Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2.School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
 全文: PDF(4140 KB)   HTML  
摘要: 对民族服饰图案进行自动分割以提取图案纹样元素,是民族服饰图案素材库构建急需解决的难题。通过融合形态学连通域标记和CV模型(MCC-CV),提出了一种民族服饰图案自动分割方法,首先对民族服饰图案进行预处理,然后采用形态学连通域标记算法获得待分割目标的位置和大致轮廓信息,对CV模型进行初始化,最后通过CV模型对不同分割目标进行边缘追踪,以实现民族服饰图案纹样元素的自动分割。实验表明,融合形态学连通域和CV模型的民族服饰图案纹样元素自动分割方法在边界召回率(BR)为0.5时,分割准确率为60%,与其他自动分割算法相比,该算法更为有效,满足了民族服饰图案素材库建设对图案纹样元素分割的基本要求。
关键词: 民族服饰图案纹样元素形态学连通域和CV模型(MCC-CV)自动分割    
Abstract: A automatic segmentation of national costume patterns to extract the pattern elements is an urgent problem to be solved in the construction of the national costume pattern material library. In this paper, we propose an automatic segmentation method by incorporating morphology connected component labeling and CV model (MCC-CV). Firstly, we carry out the image preprocessing on national dress patterns. Then,the location of the target pattern is obtained by using the morphology connected component labeling ,which serves as the initial contour of the CV model. Finally, the automatic segmentation of national costume pattern elements is realized by detecting the edge of the pattern gene using the CV model. Experimental results show that the accuracy of MCC-CV model is 60% under the premise boundary recall 0.5, which satisfies the basic requirements for the national costume pattern material library construction.
Key words: national costume    pattern elements    morphology connected component and CV model (CCL-CV)    automatic image segmentation
收稿日期: 2019-02-20 出版日期: 2019-05-25
CLC:  TP391. 4  
基金资助: 北京市科技计划项目(D171100003717003);北京市科技重大专项(Z171100004417032).
通讯作者: ORCID: http://orcid.org/0000-0002-0240-4573 ,E-mail:zhaohaiying@bupt.edu.cn.     E-mail: zhaohaiying@bupt.edu.cn.
作者简介: 侯小刚(1984—),ORCID: http://orcid.org/0000-0001-6912-873X,男,博士研究生,主要从事数字图像处理等相关研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
侯小刚
陈洪
赵海英

引用本文:

侯小刚, 陈洪, 赵海英. 融合形态学连通域和CV模型的民族服饰图案纹样元素分割方法[J]. 浙江大学学报(理学版), 2019, 46(3): 288-294.

Xiaogang HOU, Hong CHEN, Haiying ZHAO. The national costume pattern elements segmentation by incorporating morphology connected component and CV model. Journal of Zhejiang University (Science Edition), 2019, 46(3): 288-294.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.03.004        https://www.zjujournals.com/sci/CN/Y2019/V46/I3/288

1 ZHAOH Y, JIAG Y, PANZ G. Review on the methods and applications in cultural computing[J]. Computer Systems & Applications, 2016, 25(6):1-8.Doi:10.15888/j.cnki.csa.005206
2 ZHAOH Y, XUZ G, ZHANGC M. A method for generating fabric pattern with Xinjiang ethnic style[J]. Journal of Graphics, 2012, 33(2):1-8.Doi:10.3969/j.issn.1003-0158.2012.02.001
3 SOILLEP. Principle and Application of Morphological Image Analysis[M]. Beijing:Higher Education Press, 2008.
4 ZHANGG M, ZHOUM M, MA K. Image segmentation algorithm for reconstruction labeling watershed in color space[J]. Journal of Image and Graphics, 2012, 17(5):641-647.Doi:10.11834/jig.20120506
5 YADAVA K, ROY R, RAJKUMAR, et al. Thresholding and morphological based segmentation techniques for medical images[C]// International Conference on Recent Advances and Innovations in Engineering. Jaipur:IEEE, 2017:1-5.Doi:10.1109/icraie.2016.7939573
6 KRISHNAMURTHYS, NARASIMHANG, RENGASAMYU. Lung nodule growth measurement and prediction using auto cluster seed K-means morphological segmentation and shape variance analysis[J]. International Journal of Biomedical Engineering & Technology, 2017, 24(1): 53-71.Doi:10.1504/ijbet.2017.083818
7 KASSM, WITKINA, TERZOPOULOSD. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.Doi:10.1007/bf00133570
8 MALLADIR, SETHIANJ, VEMURIB C. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1995, 17(2): 158-175.Doi:10.1109/34.368173
9 CASELLESV, CATTéF, COLLT, et al. A geometric model for active contours in image processing[J]. Numerische Mathematik, 1993, 66(1): 1-31.Doi:10.1007/BF01385685
10 LIP H, ZHANGT W. Review on active contour model (snake model)[J]. Journal of Software, 2000, 11(6):751-757.
11 KIM W, KIM C. Active contours driven by the salient edge energy model[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1667-1673.
12 XIEX H, MIRMEHDIM. MAC: magnetostatic active contour model[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2008, 30(4): 632-646.Doi:10.1109/tpami.2007.70737
13 MUMFORDD, SHAHJ. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure & Applied Mathematics, 1989, 42(5): 577-685.Doi:10.1002/cpa.3160420503
14 LIC M, KAO C Y, GOREJ C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949.Doi:10.1109/tip.2008.2002304
15 LIC M, HUANGR, DINGZ H, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016.Ddoi:10.1109/tip.2011.2146190
16 HEC J, WANGY, CHENQ. Active contours driven by weighted region-scalable fitting energy based on local entropy[J]. Signal Processing, 2012, 92(2): 587-600.Doi:10.1016/j.sigpro.2011.09.004
17 ZHANGM H, LOUZ T, ZHANGJ, et al. Brain image segmentation based on multiple atlas active contour model[J]. Chinese Journal of Computers, 2016, 39(7): 1490-1500.
18 CHANT F, VESEL A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277.Doi:10.1109/83.902291
19 LIZ G, YANB, ZENGL, et al. PCB CT image segmentation based on level set with shape prior[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(4): 597-605.Doi:10.3969/j.issn.1003-9775.2016.04.009
20 LIUT, ZHANGD L, ZHOUQ W, et al. A novel fast level set initialization method[J]. Journal of Image and Graphics, 2010, 15(5):775-781.Doi:10.11834/jig.20100510
21 LONGJ, SHELHAMERE, DARRELLT. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE, 2015.Doi:10.1109/cvpr.2015.7298965
22 CHENL C, PAPANDREOUG, KOKKINOSI, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(4):834-848.Doi:10.1109/tpami.2017.2699184
23 AKHTARN, MIANA. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access, 2018, 40(6): 14410-14430.
24 ZHANGY H, QIUZ F, YAOT, et al. Fully convolutional adaptation networks for semantic segmentation[C]//2018 IEEE/CVF Conferenceon Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018: 6810-6818.Doi:10.1109/cvpr.2018.00712
25 MEHTAS, RASTEGARIM, CASPIA, et al. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Munich:Springer,2018: 561-580.Doi:10.1007/978-3-030-01249-6_34
26 OTSUN. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(1): 62-66.Doi:10.1109/tsmc.1979.4310076
27 CHANGF, CHENC J. A component-labeling algorithm using contour tracing technique[C]//SeventhInternational Conference on Document Analysis and Recognition. Edinburgh:IEEE,2003: 741-745.Doi:10.1109/icdar.2003.1227760
28 VINCENTL, SOILLEP. Watersheds in digital spaces: An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, 13(6): 583-598. Doi:10.1109/34.87344
29 GULSHANV, ROTHERC, CRIMINISIA, et al. Geodesic star convexity for interactive image segmentation[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE,2010: 3129-3136.Doi:10.1109/cvpr.2010.5540073
30 ROTHERC, KOLMOGOROVV, BLAKEA. “GrabCut”: Interactive foreground extraction using iterated graph cuts[J]. Transactions on Graphics, 2004, 23(3): 309-314.
[1] 杨冰, 徐丹, 张豪远, 罗海妮. 基于改进的DenseNet-BC对少数民族服饰的识别[J]. 浙江大学学报(理学版), 2021, 48(6): 676-683.