en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
NEUMANE, SÁNDORJ. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2):253-266.
参考文献 2
NEUMANE, SÁNDORJ. On the Schwab-Borchardt meanⅡ[J]. Mathematica Pannonica, 2006, 17(1): 49-59.
参考文献 3
LIY M, LONGB Y, CHUY M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean[J]. Journal of Mathematical Inequalities, 2012, 6(4): 567-577.doi:10.7153/jmi-06-54
参考文献 4
CHUY M, LONGB Y, GONGW M, et al. Sharp bounds for Seiffert and Neuman- Sándor means in terms of generalized logarithmic means[J]. Journal of Inequalities and Applications, 2013, Article 10.doi:10.1186/1029-242x-2013-10
参考文献 5
CHUY M , LONGB Y. Bounds of the Neuman-Sándor mean using power and identic means[J]. Abstract and Applied Analysis, 2013, Article ID 832591.doi:10.1155/2013/832591
参考文献 6
CHUY M, WANGM K,LIUB Y. Sharp inequalities for the Neuman-Sándor mean in terms of arithmetic and contra-harmonic means[J]. Revue D’Analyse Numérique Et De Théorie De L’ Approximation, 2013, 42(2):115-120.
参考文献 7
QIANW M, CHUY M. On certain inequalities for Neuman-Sándor mean[J].Abstract and Applied Analysis, 2013, Article ID 790783.doi:10.1155/2013/790783
参考文献 8
ZHANGF, CHUY M ,QIANW M. Bounds for the arithmetic mean in terms of the Neuman-Sándor and other bivariate means[J]. Journal of Applied Mathematics, 2013, Article ID 582504.doi:10.1155/2013/582504
参考文献 9
HEZ Y, QIANW M, JIANGY L, et al. Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of Contraharmonic mean[J]. Abstract and Applied Analysis, 2013, Article ID 903982.doi:10.1155/2013/903982
参考文献 10
XIAW F, CHUY M. Optimal inequalities between Neuman-Sándor, centroidal and harmonic means[J]. Journal of Mathematical Inequalities, 2013, 7(4): 593-600.doi:10.7153/jmi-07-56
参考文献 11
YANGZ H. Estimates for Neuman-Sándor mean by power means and their relative errors[J]. Journal of Mathematical Inequalities, 2013, 7(4): 711-726.doi:10.7153/jmi-07-65
参考文献 12
JIANGW D, QIF. Sharp bounds for the Neuman-Sándor mean in terms of the power and Contraharmonic means[J]. Cogent Mathematics, 2015, 2 (1): 995951.doi:10.1080/23311835.2014.995951
参考文献 13
HUANGH Y, WANGN , LONGB Y. Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means[J]. Journal of Inequalities and Applications, 2016:14.doi:10.1186/s13660-015-0955-2
参考文献 14
CHENJ J , LEIJ J ,LONGB Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means[J]. Journal of Inequalities and Applications, 2017(1):251.doi:10.1186/s13660-017-1516-7
参考文献 15
LEIJ J ,CHENJ J , LONGB Y. Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean[J]. Journal of Mathematical Inequalities, 2018, 12(2): 365-377.doi:10.7153/jmi-2018-12-27
参考文献 16
WANGM K, CHUY M, QIUY F, et al. An optimal power mean inequality for the complete elliptic integrals[J]. Applied Mathematics Letters, 2011, 24(6):887-890.doi:10.1016/j.aml.2010.12.044
参考文献 17
WANGM K, QIUS L, CHUY M, et al. Generalized Hersch-Pfluger distortion Function and complete elliptic integrals[J]. Journal Mathematical Analysis Applysis and Applications, 2012, 385(1): 221-229.doi:10.1016/j.jmaa.2011.06.039
参考文献 18
ZHAOT H, WANGM K, ZHANGW, et al. Quadratic transformation inequalities for Gaussian hypergeometric function[J]. Journal of Inequalities Applications, 2018: Article 251.doi:10.1186/s13660-018-1848-y
参考文献 19
WANGM K, QIUS L, CHUY M. Infinite series formula for Hubner upper bound function with applications to Hersch-Pfluger distortion function[J]. Mathematical Inequalities and Applications, 2018, 21(3): 629-648.doi:10.7153/mia-2018-21-46
参考文献 20
XUH Z, CHUY M, QIANW M. Sharp bounds for Sandor-Yang means in terms of arithmetic and contra-harmonic means[J]. Journal of Inequalities and Applications, 2018, Article 127.doi:10.1186/s13660-018-1719-6
参考文献 21
WANGM K, LIY M, CHUY M. Inequalities and infinite product formula for Ramanujan generalized modular equation function[J]. Ramanujan Journal, 2018, 46(1):189-200.doi:10.1007/s11139-017-9888-3
参考文献 22
WANGM K, CHUY M. Landen inequalities for a class of hypergeometric functions with applications[J].Mathematical Inequalities and Applications, 2018, 21(2):521-537.doi:10.7153/mia-2018-21-38
参考文献 23
YANGZ H, QIANW M, CHUY M, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind[J]. Journal Mathematical Analysis Applications, 2018, 462(2): 1714-1726.doi:10.1016/j.jmaa.2018.03.005
参考文献 24
QIANW M, CHUY M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters[J]. Journal Inequalities and Applications, 2017(1): Article 274.doi:10.1186/s13660-017-1550-5
参考文献 25
YANGZ H,QIANW M, CHUY M , et al. On rational bounds for the gamma function[J].Journal of Inequalities and Applications,2017(1): 210.doi:10.1186/s13660-017-1484-y
参考文献 26
WANGM K, CHUY M. Refinements of transformation inequalities for zero-balanced hypergeometric functions[J]. Acta Mathematica Scientia, 2017, 37B(3):607-622.doi:10.1016/s0252-9602(17)30026-7
参考文献 27
CHUY M , QIUY F ,WANGM K. Holder mean inequalities for the complete elliptic integrals[J]. Integral Transform Specical Functions, 2012, 23(7):521-527.doi:10.1080/10652469.2011.609482
参考文献 28
CHUY M, WANGM K, JIANGY P , et al. Concavity of the complete elliptic integrals of the second kind with respect to Holder mean[J]. Journal of Mathematical Analysis and Applications, 2012, 395(2): 637-642.doi:10.1016/j.jmaa.2012.05.083
参考文献 29
CHUY M ,WANGM K. Optimal Lehmer mean bounds for the Toader mean[J]. Results in Mathematics, 2012, 61(3/4): 223-229.doi:10.1007/s00025-010-0090-9
参考文献 30
CHUY M, WANGM K, QIUS L. Optimal combinations bounds of root-square and arithmetic means for Toader mean[J]. Proceedings-Mathematical Sciences, 2012, 122(1): 41-51.doi:10.1007/s12044-012-0062-y
参考文献 31
YANGZ H. Sharp power means bounds for Neuman-Sándor mean[J]. Mathematics Subject Classification, 2012, arXiv:1208.0895v1.doi:10.1155/2015/172867
参考文献 32
NEUMANE. A note on a certain bivariate mean[J]. Journal of Mathematical Inequalities, 2012, 6(4):637-643.doi:10.7153/jmi-06-62
参考文献 33
ZHAOT H, CHUY M, LIUB Y. Optimal bounds for Neuman-Sándor mean in terms of the convex Combinations of harmonic, geometric, quadratic, and contraharmonic means[J]. Abstract and Applied Analysis, 2012, Article ID 302635.doi:10.1155/2012/302635
参考文献 34
VAMANAMURTHYM K, VUORINENM. Inequalities for means[J]. Journal of Mathematical Analysis and Applications, 1994, 183(1):155-166.doi:10.1006/jmaa.1994.1137
参考文献 35
ANDERSONG D, VAMANAMURTHYM K, VUORINENM K. Conformal Invariants. Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts[M]. New York: John Wiley & Sons,1997.
参考文献 36
RAHMANQ I. On the monotonicity of certain functionals in the theory of analytic functions[J]. Canadian Mathematical Bulletin, 1967: 723-729.doi:10.4153/cmb-1967-074-9
参考文献 37
SIMIĆS, VUORINENM. Landen inequalities for zero-balanced hyper-geometric function[J]. Abstract and Applied Analysis, 2012, Article ID 932061.
目录 contents

    摘要

    研究了Neuman-Sándor平均NS(a,b)关于调和平均H(a,b)、算术平均A(a,b)、二次平均Q(a,b)若干特殊组合的序关系,给出最佳参数α1,α2,α3,α4,β1,β2,β3,β40,1,使得下列双向不等式:α1Q2(a,b)+1-α1A2(a,b)<NS(a,b)<β1Q2(a,b)+1-β1A2(a,b),α2Q(a,b)+1-α2A(a,b)A(a,b)<NS(a,b)<β2Q(a,b)+1-β2A(a,b)A(a,b),α3Q2(a,b)+1-α3H2(a,b)<NS(a,b)<β3Q2(a,b)+1-β3H2(a,b),α4Q(a,b)+1-α4H(a,b)A(a,b)<NS(a,b)<β4Q(a,b)+1-β4H(a,b)A(a,b)对所有不同的正实数a和b均成立。

    Abstract

    In the article, we deal with the order relation on the Neuman-Sándor mean NS(a,b) with respect to the special combinations of the harmonic mean H(a,b),arithmetic mean A(a,b) and quadratic mean Q(a,b) ,and present the best possible parameters α1,α2,α3,α4,β1,β2,β3,β40,1 such that the double inequalitiesα1Q2(a,b)+1-α1A2(a,b)<NS(a,b)<β1Q2(a,b)+1-β1A2(a,b),α2Q(a,b)+1-α2A(a,b)A(a,b)<NS(a,b)<β2Q(a,b)+1-β2A(a,b)A(a,b),α3Q2(a,b)+1-α3H2(a,b)<NS(a,b)<β3Q2(a,b)+1-β3H2(a,b),α4Q(a,b)+1-α4H(a,b)A(a,b)<NS(a,b)<β4Q(a,b)+1-β4H(a,b)A(a,b)hold for all a,b>0 with ab, where H(a,b),A(a,b),Q(a,b) and NS(a,b) are the harmonic, arithmetic, quadratic and Neuman-Sándor means of a and b, respectively.

  • 0 引言

    pR,a,b>0,则Neuman-Sándor平均NS(a,b)[1],调和平均H(a,b),几何平均G(a,b),算术平均A(a,b), 二次平均Q(a,b)p阶幂平均Mp(a,b)可分别定义为

    NS(a,b)=a-b2sinh-1a-b/a+b ,
    (1)
    H(a,b)=2aba+b ,G(a,b)=ab,
    A(a,b)=a+b2 ,Q(a,b)=a2+b22,
    (2)

    以及

    Mp(a,b)=ap+bp21/p, p0,ab,p=0

    其中sinh-1x=logx+x2+1为反双曲正弦函数。显然Mp(a,b)关于a,b是对称和一阶齐次的。众所周知,不等式:

    H(a,b)=M-1(a,b)<G(a,b)=M0(a,b)<A(a,b)=M1(a,b)<NS(a,b)<Q(a,b)=M2(a,b)

    对所有不同的正实数ab成立。

    近年来,Neuman-Sándor平均NS(a,b)和其他二元平均的比较得到了深入研究,涉及的重要不等式可参见文献[2⁃28,29,30]。

    NEUMAN等 [1] 证明了不等式

    A(a,b)<NS(a,b)<A(a,b)log1+2,
    NS(a,b)<2A(a,b)+Q(a,b)3

    对所有不同的正实数ab均成立。

    2012年,YANG[31] 建立了不等式

    Mlog2/loglog3+22(a,b)<NS(a,b)<M4/3(a,b)

    对所有不同的正实数ab成立,其中

    log2/loglog3+224/3是最佳参数。

    文献[32,33]证明了双向不等式

    α1Q(a,b)+1-α1A(a,b)<NS(a,b)<β1Q(a,b)+1-β1A(a,b)
    α2H(a,b)+1-α2Q(a,b)<NS(a,b)<β2H(a,b)+1-β2Q(a,b)

    对所有不同的正实数ab成立当且仅当

    α11-log1+2/2-1log1+2=0.3249, β11/3, α22/9,β21-2log1+2=0.1977

    本文的主要结果是给出以下几个最佳参数α1,α2,α3,α4,β1,β2,β3,β40,1使得下列双向不等式:

    α1Q2(a,b)+1-α1A2(a,b)<NS(a,b)<β1Q2(a,b)+1-β1A2(a,b)
    α2Q(a,b)+1-α2A(a,b)A(a,b)<NS(a,b)<β2Q(a,b)+1-β2A(a,b)A(a,b),
    α3Q2(a,b)+1-α3H2(a,b)<NS(a,b)<β3Q2(a,b)+1-β3H2(a,b),
    α4Q(a,b)+1-α4H(a,b)A(a,b)<NS(a,b)<β4Q(a,b)+1-β4H(a,b)A(a,b)

    对所有不同的正实数ab均成立。

  • 1 引理

    为了证明主要结果,需引入以下相关引理。

    引理1[34,35] 设f,g:a,bR,函数在a,b连续,在a,b可导,且g'x0。若f'x/g'xa,b单调递增(递减),则函数fx-fa/gx-gafx-fb/gx-gb也在a,b单调递增(递减)。若f'x/g'x是严格单调的,则上述结论的单调性也是严格的。

    引理2[36,37] 设实幂级数Ax=n=0anxnBx=n=0bnxn-r,rr>0上收敛,且an,bn>0对所有的n成立。 若序列an/bn严格单调递增(递减),则函数xAx/Bx0,r严格单调递增(递减)。

    引理3 函数fx=sinh2(x)-x2x2sinh2(x)在区间0,log1+2严格单调递减,且值域为1/log21+2-1,1/3

    证明 设f1x=sinh2(x)-x2,

    f2x=x2sinh2(x)

    经简单计算可得

    fx=f1xf2x=f1x-f10+f2x-f20 ,
    (3)
    f'1xf'2x=sinh2x-2xx2sinh2x+xcosh2x-x=n=022n+12n+1!x2n+1-2xx2n=022n+12n+1!x2n+1+xn=022n2n!x2n-x=n=022n+32n+3!x2nn=0n+222n+22n+2!x2n=n=0anx2nn=0bnx2n
    (4)

    其中,

    an=22n+3/2n+3!>0
    bn=n+222n+2/2n+2!>0
    (5)

    an+1bn+1-anbn=-24n+9n+2n+32n+32n+5<0
    (6)

    对所有n0成立。

    由引理2和等式(4)及不等式(6)得f'1x/f'2x0,log1+2严格单调递减。

    注意到

    f0+=a0b0=13 ,
    flog1+2=1log21+2-1
    (7)

    由引理1和等式(3)、(7)及f'1x/f'2x的单调性,引理3得证。

    引理4 函数gx=sinh2x-x2x2coshx-x2

    在区间0,log1+2严格单调递增,值域为2/3,1+21/log21+2-1

    证明 设g1x=sinh2(x)-x2,

    g2x=x2coshx-x2

    经简单计算可得

    gx=g1xg2x=g1x-g10+g2x-g20,g'1xg'2x=sinh2x-2xx2sinhx+2xcoshx-2x
    (8)

    利用幂级数展开可得

    g'1xg'2x=n=022n+12n+1!x2n+1-2xx2n=0x2n+12n+1!+2xn=0x2n2n!-2x=n=122n+12n+1!x2n+1x2n=0x2n+12n+1!+2xn=1x2n2n!=n=022n+32n+3!x2n+3n=02n+22n+2!x2n+3=n=022n+32n+3!x2nn=02n+22n+2!x2n=n=0cnx2nn=0dnx2n,
    (9)

    其中,

    cn=22n+32n+3!>0dn=2n+22n+2!>0
    (10)

    cn+1dn+1-cndn=6n2+17n+9n+2n+32n+32n+5>0
    (11)

    对所有n0成立。

    由引理2和等式(9)及不等式(10)、(11)得g'1x/g'2x0,log1+2严格单调递增。

    注意到

    g0+=c0d0=23,glog1+2-=1+21/log21+2-1
    (12)

    由引理1和等式(8)、(12)及g'1x/g'2x的单调性,引理4得证。

    引理5 设pR

    hx=1-p2x8+24p2-7p+3x6+3p2+5p-8x4+22p-3x2+7-9p
    (13)

    则以下结论成立:

    (i) 若p=7/9, 则当x0,1hx<0

    (ii) 若p=1/2log21+2=0.6436, 则存在λ00,1使得当x0,λ0hx>0;当xλ0,1hx<0

    证明 (i) 当p=7/9时,等式(13)可化为

    hx=281x22x6-2x4-93x-117<-281x293x+117<0 ,
    (14)

    对所有x0,1成立。即结论(i)得证。

    (ii) 当p=1/2log21+2=0.6436,经数值计算得

    4p2-7p+3=0.1515>0 ,
    (15)
    3p2+5p-8=-3.5388<0,
    (16)
    2p-3=-1.7126<0 ,
    (17)
    17p-18=-7.0579<0 ,
    (18)
    h0=7-9p=1.2071>0 ,
    (19)
    h1=4p3p-4=-5.3269<0
    (20)
    h'x=4x21-p2x6+34p2-7p+3x4+
    4x3p2+5p-8x2+2p-3
    (21)

    由不等式(15) ~(18)和等式(21)可得

    h'x<4x21-p2x2+34p2-7p+3x2+4x3p2+5p-8x2+2p-3x2=4p17p-18x3<0
    (22)

    对所有x0,1成立。

    因此,由不等式(19)、(20)和(22),结论(ii)得证。

    引理 6 设pR,

    kx=2p1-px3+9p2-16p+8x2+12p1-px+5p2-16p+8
    (23)

    则以下结论成立:

    (i) 若p=8/9, 则当x1,2时,kx>0;

    (ii)若p=2/2log21+2=0.9102时,

    则存在μ01,2,当x1,μ0时,kx<0;而当xμ0,2时,kx>0

    证明 (i) 当p=8/9时,有

    kx=881x-12x2+11x+23>0 ,
    (24)

    对所有x1,2成立。即结论(i)得证。

    (ii) 当p=2/2log21+2=0.9102时,经数值计算得

    9p2-16p+8=0.8929>0
    (25)
    k1=28-9p=-0.3846<0 ,
    (26)
    k2=162p1-p+23p2-48p+24=1.2130>0
    (27)

    由等式(23)和不等式(25)得

    k'x=6p1-px2+29p2-16p+8x+12p1-p>0
    (28)

    对所有x1,2成立。

    因此, 由不等式(26)~(28),结论(ii)得证。

  • 2 主要结果及证明

    定理1 双向不等式

    α1Q2(a,b)+1-α1A2(a,b)<NS(a,b)<
    β1Q2(a,b)+1-β1A2(a,b)
    (29)

    对所有不同的正实数ab成立当且仅当

    α11/log21+2-1=0.2873,β11/3

    证明 不等式(29)可改写成

    α1<NS2(a,b)-A2(a,b)Q2(a,b)-A2(a,b)<β1
    (30)

    A(a,b),Q(a,b)NS(a,b)是对称和一阶齐次的,不失一般性,假设a>b>0,设

    v=a-b/a+b0,1
    x=sinh-1v0,log1+2

    则不等式(30)可化为

    α1<sinh2(x)-x2x2sinh2(x)<β1
    (31)

    由不等式(31)及引理3得,不等式(29)对所有不同的正实数ab成立当且仅当

    α11/log21+2-1=0.2873,β11/3

    定理2 双向不等式

    α2Q(a,b)+1-α2A(a,b)A(a,b)<NS(a,b)<β2Q(a,b)+1-β2A(a,b)A(a,b),
    (32)

    对所有不同的正实数ab成立当且仅当α22/3β21+21/log21+2-1=0.6936

    证明 不等式(32)可改写成

    α2<NS2(a,b)-A2(a,b)A(a,b)Q(a,b)-A(a,b)<β2
    (33)

    不失一般性,假设a>b>0v=a-b/a+b0,1x=sinh-1v0,log1+2。则不等式(33)可化为

    α2<sinh2(x)-x2x2cosh(x)-1<β2
    (34)

    由不等式(34)及引理4,可得不等式(32)对所有不同的正实数ab成立当且仅当α22/3β21+21/log21+2-1=0.6936

    定理 3 双向不等式

    α3Q2(a,b)+1-α3H2(a,b)<NS(a,b)<β3Q2(a,b)+1-β3H2(a,b),

    对所有不同的正实数ab成立当且仅当

    α31/2log21+2=0.6436

    β37/9

    证明 因H(a,b),Q(a,b)NS(a,b)是对称和一阶齐次的,不失一般性,假设a>b>0x=a-b/a+b0,1p0,1。则根据式(1)和(2)得

    NS2(a,b)-H2(a,b)Q2(a,b)-H2(a,b)=x/sinh-1x2-1-x221+x2-1-x22,
    (35)
    logpQ2(a,b)+1-pH2(a,b)NS(a,b)=12logp1+x2+1-p1-x22-logx+logsinh-1x=Hx
    (36)

    经简单计算得

    H0+=0 ,
    (37)
    H1-=12log2p+loglog1+2 ,
    (38)
    H'x=p-1x4+1x1-px4+3p-2x2+1sinh-1xH1x,
    (39)

    其中,

    H1x=x1-px4+3p-2x2+11+x2p-1x4+1-sinh-1x,H10=0H11-=2-log1+2>0
    (40)
    H'1x=-x21+x23/2p-1x4+12hx
    (41)

    其中hx由等式(13)定义。

    以下分2种情形证明。

    情形1 p=1/2log21+2。由引理5(ii)和等式(41)可知,存在λ00,1,使得H1x0,λ0严格单调递减,在λ0,1严格单调递增。

    由等式(39)、 (40)及H1x的分段单调性可得,存在λ0,1使得Hx0,λ严格单调递减,在λ,1严格单调递增。

    注意到此时等式(38) 变成

    H1-=0
    (42)

    由等式(36)、(37)和(42)及Hx的分段单调性可得

    NS(a,b)>12log21+2Q2(a,b)+1-12log21+2H2(a,b)12
    (43)

    对所有不同的正实数ab成立。

    情形2 p=7/9。由引理5(i)和等式(41)可得,H1x0,1严格单调递增。

    由等式(36)、(37)、(39)、(40)及H1x的单调性可得

    NS(a,b)<79Q2(a,b)+29H2(a,b)
    (44)

    对所有不同的正实数ab成立。

    注意到

    limx0+x/sinh-1x2-1-x221+x2-1-x22=79
    (45)
    limx1-x/sinh-1x2-1-x221+x2-1-x22=12log21+2
    (46)

    由等式(35)、(45)、(46)和不等式(43)、(44),定理3得证。

    定理4 双向不等式

    α4Q(a,b)+1-α4H(a,b)A(a,b)<NS(a,b)<β4Q(a,b)+1-β4H(a,b)A(a,b)

    对所有不同的正实数ab成立当且仅当α48/9β42/2log21+2=0.9102

    证明 因H(a,b),A(a,b),Q(a,b)NS(a,b)是对称和一阶齐次的,不失一般性,假设a>b>0v=a-b/a+b0,1x=1+v21,2,且p0,1,则由等式(1)和(2)得

    NS2(a,b)-A(a,b)H(a,b)A(a,b)Q(a,b)-H(a,b)=x2-1/sinh-1x2-12-2-x2x2+x-2,
    (47)
    logpQ(a,b)+1-pH(a,b)A(a,b)NS(a,b)=12logp-1x2+px+21-p-12logx2-1+logsinh-1x2-1=Kx
    (48)

    经简单计算可得

    K1+=0 ,
    (49)
    K2-=14log2p2+loglog1+2 ,
    (50)
    K'x=[px2+21-px+p]/2x2-1×p-1x2+px+21-psinh-1x2-1K1x,
    (51)

    其中,

    K1x=2x2-1p-1x2+px+21-ppx2+21-px+p-sinh-1x2-1, K11=0,
    (52)
    K12=22p221-p+3p-log1+2
    (53)
    K'1x=-x2-1px2+21-px+p2kx
    (54)

    kx由等式(23)定义。

    以下分2种情形证明。

    情形1 p=8/9。由等式(54)和引理6(i)可知,K1x1,2严格单调递减。

    由等式(48)、(49)、(51)、(52)及K1x的单调性得到

    NS(a,b)>89Q(a,b)+19H(a,b)A(a,b)
    (55)

    对所有不同的正实数ab成立。

    情形 2 p=2/2log21+2。由等式(54)和引理6(ii)得,存在μ01,2使得K1x1,μ0严格递增,在μ0,2严格递减。

    由等式(53) 得到

    K12=-0.0187<0
    (56)

    由等式(51)、(52)和不等式(56)及K1x的分段单调性可知,存在μ1,2使得Kx1,μ单调递增,在μ,2单调递减。

    注意到等式(50)变为

    K2-=0
    (57)

    因此,由式(48)、(49)和(57)及Kx的分段单调性可得

    NS(a,b)<22log21+2Q(a,b)+1-22log21+2H(a,b)A(a,b)12
    (58)

    对所有不同的正实数ab成立。注意到

    limx1+x2-1/sinh-1x2-12-2-x2x2+x-2=89
    (59)
    limx2-x2-1/sinh-1x2-12-2-x2x2+x-2=22log21+2
    (60)

    由等式(47)、(59)、(60)和不等式(55)、(58),定理4得证。

  • 参考文献(References)

    • 1

      NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2):253-266.

    • 2

      NEUMAN E, SÁNDOR J. On the Schwab-Borchardt meanⅡ[J]. Mathematica Pannonica, 2006, 17(1): 49-59.

    • 3

      LI Y M, LONG B Y, CHU Y M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean[J]. Journal of Mathematical Inequalities, 2012, 6(4): 567-577.doi:10.7153/jmi-06-54

    • 4

      CHU Y M, LONG B Y, GONG W M, et al. Sharp bounds for Seiffert and Neuman- Sándor means in terms of generalized logarithmic means[J]. Journal of Inequalities and Applications, 2013, Article 10.doi:10.1186/1029-242x-2013-10

    • 5

      CHU Y M , LONG B Y. Bounds of the Neuman-Sándor mean using power and identic means[J]. Abstract and Applied Analysis, 2013, Article ID 832591.doi:10.1155/2013/832591

    • 6

      CHU Y M, WANG M K,LIU B Y. Sharp inequalities for the Neuman-Sándor mean in terms of arithmetic and contra-harmonic means[J]. Revue D’Analyse Numérique Et De Théorie De L’ Approximation, 2013, 42(2):115-120.

    • 7

      QIAN W M, CHU Y M. On certain inequalities for Neuman-Sándor mean[J].Abstract and Applied Analysis, 2013, Article ID 790783.doi:10.1155/2013/790783

    • 8

      ZHANG F, CHU Y M ,QIAN W M. Bounds for the arithmetic mean in terms of the Neuman-Sándor and other bivariate means[J]. Journal of Applied Mathematics, 2013, Article ID 582504.doi:10.1155/2013/582504

    • 9

      HE Z Y, QIAN W M, JIANG Y L, et al. Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of Contraharmonic mean[J]. Abstract and Applied Analysis, 2013, Article ID 903982.doi:10.1155/2013/903982

    • 10

      XIA W F, CHU Y M. Optimal inequalities between Neuman-Sándor, centroidal and harmonic means[J]. Journal of Mathematical Inequalities, 2013, 7(4): 593-600.doi:10.7153/jmi-07-56

    • 11

      YANG Z H. Estimates for Neuman-Sándor mean by power means and their relative errors[J]. Journal of Mathematical Inequalities, 2013, 7(4): 711-726.doi:10.7153/jmi-07-65

    • 12

      JIANG W D, QI F. Sharp bounds for the Neuman-Sándor mean in terms of the power and Contraharmonic means[J]. Cogent Mathematics, 2015, 2 (1): 995951.doi:10.1080/23311835.2014.995951

    • 13

      HUANG H Y, WANG N , LONG B Y. Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means[J]. Journal of Inequalities and Applications, 2016:14.doi:10.1186/s13660-015-0955-2

    • 14

      CHEN J J , LEI J J ,LONG B Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means[J]. Journal of Inequalities and Applications, 2017(1):251.doi:10.1186/s13660-017-1516-7

    • 15

      LEI J J ,CHEN J J , LONG B Y. Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean[J]. Journal of Mathematical Inequalities, 2018, 12(2): 365-377.doi:10.7153/jmi-2018-12-27

    • 16

      WANG M K, CHU Y M, QIU Y F, et al. An optimal power mean inequality for the complete elliptic integrals[J]. Applied Mathematics Letters, 2011, 24(6):887-890.doi:10.1016/j.aml.2010.12.044

    • 17

      WANG M K, QIU S L, CHU Y M, et al. Generalized Hersch-Pfluger distortion Function and complete elliptic integrals[J]. Journal Mathematical Analysis Applysis and Applications, 2012, 385(1): 221-229.doi:10.1016/j.jmaa.2011.06.039

    • 18

      ZHAO T H, WANG M K, ZHANG W, et al. Quadratic transformation inequalities for Gaussian hypergeometric function[J]. Journal of Inequalities Applications, 2018: Article 251.doi:10.1186/s13660-018-1848-y

    • 19

      WANG M K, QIU S L, CHU Y M. Infinite series formula for Hubner upper bound function with applications to Hersch-Pfluger distortion function[J]. Mathematical Inequalities and Applications, 2018, 21(3): 629-648.doi:10.7153/mia-2018-21-46

    • 20

      XU H Z, CHU Y M, QIAN W M. Sharp bounds for Sandor-Yang means in terms of arithmetic and contra-harmonic means[J]. Journal of Inequalities and Applications, 2018, Article 127.doi:10.1186/s13660-018-1719-6

    • 21

      WANG M K, LI Y M, CHU Y M. Inequalities and infinite product formula for Ramanujan generalized modular equation function[J]. Ramanujan Journal, 2018, 46(1):189-200.doi:10.1007/s11139-017-9888-3

    • 22

      WANG M K, CHU Y M. Landen inequalities for a class of hypergeometric functions with applications[J].Mathematical Inequalities and Applications, 2018, 21(2):521-537.doi:10.7153/mia-2018-21-38

    • 23

      YANG Z H, QIAN W M, CHU Y M, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind[J]. Journal Mathematical Analysis Applications, 2018, 462(2): 1714-1726.doi:10.1016/j.jmaa.2018.03.005

    • 24

      QIAN W M, CHU Y M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters[J]. Journal Inequalities and Applications, 2017(1): Article 274.doi:10.1186/s13660-017-1550-5

    • 25

      YANG Z H,QIAN W M, CHU Y M , et al. On rational bounds for the gamma function[J].Journal of Inequalities and Applications,2017(1): 210.doi:10.1186/s13660-017-1484-y

    • 26

      WANG M K, CHU Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions[J]. Acta Mathematica Scientia, 2017, 37B(3):607-622.doi:10.1016/s0252-9602(17)30026-7

    • 27

      CHU Y M , QIU Y F ,WANG M K. Holder mean inequalities for the complete elliptic integrals[J]. Integral Transform Specical Functions, 2012, 23(7):521-527.doi:10.1080/10652469.2011.609482

    • 28

      CHU Y M, WANG M K, JIANG Y P , et al. Concavity of the complete elliptic integrals of the second kind with respect to Holder mean[J]. Journal of Mathematical Analysis and Applications, 2012, 395(2): 637-642.doi:10.1016/j.jmaa.2012.05.083

    • 29

      CHU Y M ,WANG M K. Optimal Lehmer mean bounds for the Toader mean[J]. Results in Mathematics, 2012, 61(3/4): 223-229.doi:10.1007/s00025-010-0090-9

    • 30

      CHU Y M, WANG M K, QIU S L. Optimal combinations bounds of root-square and arithmetic means for Toader mean[J]. Proceedings-Mathematical Sciences, 2012, 122(1): 41-51.doi:10.1007/s12044-012-0062-y

    • 31

      YANG Z H. Sharp power means bounds for Neuman-Sándor mean[J]. Mathematics Subject Classification, 2012, arXiv:1208.0895v1.doi:10.1155/2015/172867

    • 32

      NEUMAN E. A note on a certain bivariate mean[J]. Journal of Mathematical Inequalities, 2012, 6(4):637-643.doi:10.7153/jmi-06-62

    • 33

      ZHAO T H, CHU Y M, LIU B Y. Optimal bounds for Neuman-Sándor mean in terms of the convex Combinations of harmonic, geometric, quadratic, and contraharmonic means[J]. Abstract and Applied Analysis, 2012, Article ID 302635.doi:10.1155/2012/302635

    • 34

      VAMANAMURTHY M K, VUORINEN M. Inequalities for means[J]. Journal of Mathematical Analysis and Applications, 1994, 183(1):155-166.doi:10.1006/jmaa.1994.1137

    • 35

      ANDERSON G D, VAMANAMURTHY M K, VUORINEN M K. Conformal Invariants. Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts[M]. New York: John Wiley & Sons,1997.

    • 36

      RAHMAN Q I. On the monotonicity of certain functionals in the theory of analytic functions[J]. Canadian Mathematical Bulletin, 1967: 723-729.doi:10.4153/cmb-1967-074-9

    • 37

      SIMIĆ S, VUORINEN M. Landen inequalities for zero-balanced hyper-geometric function[J]. Abstract and Applied Analysis, 2012, Article ID 932061.

徐仁旭

机 构:浙江建设职业技术学院 人文与信息系,浙江 杭州 311231

Affiliation:Department of Humanity and Information,Zhejiang College of Construction,Hangzhou 311231,China

邮 箱:55444765@qq.com.

作者简介:徐仁旭(1980—),https://orcid.org/0000-0003-0383-7917,男,硕士,讲师,主要从事解析不等式研究,E-mail:55444765@qq.com.

徐会作

机 构:温州广播电视大学 教师教学发展中心,浙江;温州 325000

Affiliation:Teachers’ Teaching Development Center, Wenzhou Broadcast and TV University, Wenzhou 325000, Zhejiang Province,China

钱伟茂

机 构:湖州广播电视大学 远程教育学院,浙江 湖州 313000

Affiliation:School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, Zhejiang Province,China

image /
  • 参考文献(References)

    • 1

      NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2):253-266.

    • 2

      NEUMAN E, SÁNDOR J. On the Schwab-Borchardt meanⅡ[J]. Mathematica Pannonica, 2006, 17(1): 49-59.

    • 3

      LI Y M, LONG B Y, CHU Y M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean[J]. Journal of Mathematical Inequalities, 2012, 6(4): 567-577.doi:10.7153/jmi-06-54

    • 4

      CHU Y M, LONG B Y, GONG W M, et al. Sharp bounds for Seiffert and Neuman- Sándor means in terms of generalized logarithmic means[J]. Journal of Inequalities and Applications, 2013, Article 10.doi:10.1186/1029-242x-2013-10

    • 5

      CHU Y M , LONG B Y. Bounds of the Neuman-Sándor mean using power and identic means[J]. Abstract and Applied Analysis, 2013, Article ID 832591.doi:10.1155/2013/832591

    • 6

      CHU Y M, WANG M K,LIU B Y. Sharp inequalities for the Neuman-Sándor mean in terms of arithmetic and contra-harmonic means[J]. Revue D’Analyse Numérique Et De Théorie De L’ Approximation, 2013, 42(2):115-120.

    • 7

      QIAN W M, CHU Y M. On certain inequalities for Neuman-Sándor mean[J].Abstract and Applied Analysis, 2013, Article ID 790783.doi:10.1155/2013/790783

    • 8

      ZHANG F, CHU Y M ,QIAN W M. Bounds for the arithmetic mean in terms of the Neuman-Sándor and other bivariate means[J]. Journal of Applied Mathematics, 2013, Article ID 582504.doi:10.1155/2013/582504

    • 9

      HE Z Y, QIAN W M, JIANG Y L, et al. Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of Contraharmonic mean[J]. Abstract and Applied Analysis, 2013, Article ID 903982.doi:10.1155/2013/903982

    • 10

      XIA W F, CHU Y M. Optimal inequalities between Neuman-Sándor, centroidal and harmonic means[J]. Journal of Mathematical Inequalities, 2013, 7(4): 593-600.doi:10.7153/jmi-07-56

    • 11

      YANG Z H. Estimates for Neuman-Sándor mean by power means and their relative errors[J]. Journal of Mathematical Inequalities, 2013, 7(4): 711-726.doi:10.7153/jmi-07-65

    • 12

      JIANG W D, QI F. Sharp bounds for the Neuman-Sándor mean in terms of the power and Contraharmonic means[J]. Cogent Mathematics, 2015, 2 (1): 995951.doi:10.1080/23311835.2014.995951

    • 13

      HUANG H Y, WANG N , LONG B Y. Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means[J]. Journal of Inequalities and Applications, 2016:14.doi:10.1186/s13660-015-0955-2

    • 14

      CHEN J J , LEI J J ,LONG B Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means[J]. Journal of Inequalities and Applications, 2017(1):251.doi:10.1186/s13660-017-1516-7

    • 15

      LEI J J ,CHEN J J , LONG B Y. Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean[J]. Journal of Mathematical Inequalities, 2018, 12(2): 365-377.doi:10.7153/jmi-2018-12-27

    • 16

      WANG M K, CHU Y M, QIU Y F, et al. An optimal power mean inequality for the complete elliptic integrals[J]. Applied Mathematics Letters, 2011, 24(6):887-890.doi:10.1016/j.aml.2010.12.044

    • 17

      WANG M K, QIU S L, CHU Y M, et al. Generalized Hersch-Pfluger distortion Function and complete elliptic integrals[J]. Journal Mathematical Analysis Applysis and Applications, 2012, 385(1): 221-229.doi:10.1016/j.jmaa.2011.06.039

    • 18

      ZHAO T H, WANG M K, ZHANG W, et al. Quadratic transformation inequalities for Gaussian hypergeometric function[J]. Journal of Inequalities Applications, 2018: Article 251.doi:10.1186/s13660-018-1848-y

    • 19

      WANG M K, QIU S L, CHU Y M. Infinite series formula for Hubner upper bound function with applications to Hersch-Pfluger distortion function[J]. Mathematical Inequalities and Applications, 2018, 21(3): 629-648.doi:10.7153/mia-2018-21-46

    • 20

      XU H Z, CHU Y M, QIAN W M. Sharp bounds for Sandor-Yang means in terms of arithmetic and contra-harmonic means[J]. Journal of Inequalities and Applications, 2018, Article 127.doi:10.1186/s13660-018-1719-6

    • 21

      WANG M K, LI Y M, CHU Y M. Inequalities and infinite product formula for Ramanujan generalized modular equation function[J]. Ramanujan Journal, 2018, 46(1):189-200.doi:10.1007/s11139-017-9888-3

    • 22

      WANG M K, CHU Y M. Landen inequalities for a class of hypergeometric functions with applications[J].Mathematical Inequalities and Applications, 2018, 21(2):521-537.doi:10.7153/mia-2018-21-38

    • 23

      YANG Z H, QIAN W M, CHU Y M, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind[J]. Journal Mathematical Analysis Applications, 2018, 462(2): 1714-1726.doi:10.1016/j.jmaa.2018.03.005

    • 24

      QIAN W M, CHU Y M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters[J]. Journal Inequalities and Applications, 2017(1): Article 274.doi:10.1186/s13660-017-1550-5

    • 25

      YANG Z H,QIAN W M, CHU Y M , et al. On rational bounds for the gamma function[J].Journal of Inequalities and Applications,2017(1): 210.doi:10.1186/s13660-017-1484-y

    • 26

      WANG M K, CHU Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions[J]. Acta Mathematica Scientia, 2017, 37B(3):607-622.doi:10.1016/s0252-9602(17)30026-7

    • 27

      CHU Y M , QIU Y F ,WANG M K. Holder mean inequalities for the complete elliptic integrals[J]. Integral Transform Specical Functions, 2012, 23(7):521-527.doi:10.1080/10652469.2011.609482

    • 28

      CHU Y M, WANG M K, JIANG Y P , et al. Concavity of the complete elliptic integrals of the second kind with respect to Holder mean[J]. Journal of Mathematical Analysis and Applications, 2012, 395(2): 637-642.doi:10.1016/j.jmaa.2012.05.083

    • 29

      CHU Y M ,WANG M K. Optimal Lehmer mean bounds for the Toader mean[J]. Results in Mathematics, 2012, 61(3/4): 223-229.doi:10.1007/s00025-010-0090-9

    • 30

      CHU Y M, WANG M K, QIU S L. Optimal combinations bounds of root-square and arithmetic means for Toader mean[J]. Proceedings-Mathematical Sciences, 2012, 122(1): 41-51.doi:10.1007/s12044-012-0062-y

    • 31

      YANG Z H. Sharp power means bounds for Neuman-Sándor mean[J]. Mathematics Subject Classification, 2012, arXiv:1208.0895v1.doi:10.1155/2015/172867

    • 32

      NEUMAN E. A note on a certain bivariate mean[J]. Journal of Mathematical Inequalities, 2012, 6(4):637-643.doi:10.7153/jmi-06-62

    • 33

      ZHAO T H, CHU Y M, LIU B Y. Optimal bounds for Neuman-Sándor mean in terms of the convex Combinations of harmonic, geometric, quadratic, and contraharmonic means[J]. Abstract and Applied Analysis, 2012, Article ID 302635.doi:10.1155/2012/302635

    • 34

      VAMANAMURTHY M K, VUORINEN M. Inequalities for means[J]. Journal of Mathematical Analysis and Applications, 1994, 183(1):155-166.doi:10.1006/jmaa.1994.1137

    • 35

      ANDERSON G D, VAMANAMURTHY M K, VUORINEN M K. Conformal Invariants. Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts[M]. New York: John Wiley & Sons,1997.

    • 36

      RAHMAN Q I. On the monotonicity of certain functionals in the theory of analytic functions[J]. Canadian Mathematical Bulletin, 1967: 723-729.doi:10.4153/cmb-1967-074-9

    • 37

      SIMIĆ S, VUORINEN M. Landen inequalities for zero-balanced hyper-geometric function[J]. Abstract and Applied Analysis, 2012, Article ID 932061.