|
|
[[15]] |
WANG H R, SHEN X J, WANG Z H, et al. Study on folding stability of origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2726-2732.
|
|
|
[[16]] |
SILVERBERG J L, NA J H, EVANS A A, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom[J]. Nature Materials, 2015, 14(4): 389-393.
|
|
|
[[17]] |
邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性[J]. 力学学报, 2019, 51(4): 1110-1121. QIU H, FANG H B, XU J. Nonlinear dynamical characteristics of a multi-stable series origami structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121.
|
|
|
[[18]] |
WANG Y B, LIU K. Shape optimization of non-rigid origami leading to emerging bistability[J]. Mechanics Research Communications, 2023, 132: 104165.
|
|
|
[[19]] |
FABER J A, ARRIETA A F, STUDART A R. Bioinspired spring origami[J]. Science, 2018, 359(6382): 1386-1391.
|
|
|
[[20]] |
FLORES J, STEIN-MONTALVO L, ADRIAENSSENS S. Effect of crease curvature on the bistability of the origami Waterbomb base[J]. Extreme Mechanics Letters, 2022, 57: 101909.
|
|
|
[[21]] |
GUO K X, LIU M C, VELLA D, et al. Dehydration-induced corrugated folding in Rhapis excelsa plant leaves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(17): e2320259121.
|
|
|
[[1]] |
冯慧娟, 杨名远, 姚国强, 等. 折纸机器人[J]. 中国科学: 技术科学, 2018, 48(12): 1259-1274. doi:10.1360/n092018-00213 FENG H J, YANG M Y, YAO G Q, et al. Origami robots[J]. Scientia Sinica (Technologica), 2018, 48(12): 1259-1274.
doi: 10.1360/n092018-00213
|
|
|
[[2]] |
SADEGHI S, ALLISON S R, BESTILL B, et al. TMP origami jumping mechanism with nonlinear stiffness[J]. Smart Materials and Structures, 2021, 30(6): 065002.
|
|
|
[[3]] |
WANG C L, GUO H W, LIU R Q, et al. A kirigami-inspired metamorphic double-loop linkage with multiple single-degree-of-freedom reconfiguration branches[J]. Journal of Mechanical Design, 2023, 145(7): 073301.
|
|
|
[[22]] |
FANG H B, LI S Y, JI H M, et al. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices[J]. Physical Review E, 2016, 94(4): 043002.
|
|
|
[[4]] |
SALAZAR R, MURTHY S, PELLAZAR C, et al. TransFormers for lunar extreme environments: large origami deployable solar reflectors[C]//2017 IEEE Aerospace Conference. Big Sky, MT, Mar. 4-11, 2017.
|
|
|
[[5]] |
HUANG X H, LIU L S, LIN Y H, et al. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures[J]. Science Advances, 2023, 9(34): eadh9799.
|
|
|
[[6]] |
LIU Q K, WANG W, REYNOLDS M F, et al. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics[J]. Science Robotics, 2021, 6(52): eabe6663.
|
|
|
[[7]] |
KIM S J, LEE D Y, JUNG G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics, 2018, 3(16): eaar2915.
|
|
|
[[8]] |
FANG H B, CHU S A, XIA Y T, et al. Programmable self-locking origami mechanical metamaterials[J]. Advanced Materials, 2018, 30(15): 1706311.
|
|
|
[[9]] |
HAN H B, SOROKIN V, TANG L H, et al. Lightweight origami isolators with deployable mechanism and quasi-zero-stiffness property[J]. Aerospace Science & Technology, 2022, 121: 107319.
|
|
|
[[10]] |
WU H P, FANG H B, CHEN L F, et al. Transient dynamics of a miura-origami tube during free deployment[J]. Physical Review Applied, 2020, 14(3): 034068.
|
|
|
[[11]] |
CHI Y D, LI Y B, ZHAO Y, et al. Bistable and multistable actuators for soft robots: structures, materials, and functionalities[J]. Advanced Materials, 2022, 34(19): 2110384.
|
|
|
[[12]] |
ZHOU X, ZANG S X, YOU Z. Origami mechanical metamaterials based on the Miura-derivative fold patterns[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2191): 20160361.
|
|
|
[[13]] |
WEI S Z, GHOSH T K. Bioinspired bistable dielectric elastomer actuators: programmable shapes and application as binary valves[J]. Soft Robotics, 2022, 9(5): 900-906.
|
|
|
[[14]] |
LASCHI C, MAZZOLAI B, CIANCHETTI M. Soft robotics: technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics, 2016, 1(1): eaah3690.
|
|
|