|
|
[1] |
苏靖惟,张文增.单链传动双齿条平夹间接自适应机器人手研制[J].机械传动,2019,43(2):154-161. SU J W, ZHANG W Z. Development of a parallel and indirectly self-adaptive robot hand with single-chain transmission of double-rack mechanism[J]. Journal of Mechanical Transmission, 2019, 43(2): 154-161.
|
|
|
[2] |
马涛,杨冬,赵海文,等.一种新型欠驱动机械手爪的抓取分析和优化设计[J].机器人,2020,42(3):354-364. MA T, YANG D, ZHAO H W, et al. Grasp analysis and optimal design of a new underactuated manipulator[J]. Robot, 2020, 42(3): 354-364.
|
|
|
[3] |
CHEN W R, XIONG C H, WANG Y N. Analysis and synthesis of underactuated compliant mechanisms based on transmission properties of motion and force[J]. IEEE Transactions on Robotics, 2020, 36(3): 773-788.
|
|
|
[4] |
万昌雄.变胞三指灵巧手的运动分析与控制系统设计[D].天津:天津大学,2018. doi:10.17775/cseejpes.2018.00570 WAN C X. Motion analysis and control system design of a three-fingered metamorphic robotic hand[D]. Tianjin: Tianjin University, 2018.
doi: 10.17775/cseejpes.2018.00570
|
|
|
[5] |
TOWNSEND W. The BarrettHand grasper-programmably flexible part handling and assembly[J]. Industrial Robot, 2000, 27(3): 181-188.
|
|
|
[6] |
LI G X, ZHANG C, ZHANG W Z, et al. Coupled and self-adaptive under-actuated finger with a novel S-coupled and secondly self-adaptive mechanism[J]. Journal of Mechanisms and Robotics, 2014, 6(4): 041010.
|
|
|
[7] |
梁达尧,张文增.平夹自适应欠驱动手的参数优化与稳定性分析[J].机器人,2017,39(3):282-291. LIANG D Y, ZHANG W Z. Parameters optimization and stability analysis for a parallel and self-adaptive underactuated hand[J]. Robot, 2017, 39(3): 282-291.
|
|
|
[8] |
PIAZZA C, GRIOLI G, CATALANO M, et al. A century of robotic hands[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2(1): 1-32.
|
|
|
[9] |
TEOH Z E, PHILLIPS B T, BECKER K P, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 3(20): eaat5276.
|
|
|
[10] |
吴立成,孔岩萱,李霞丽.全转动关节欠驱动手指机构及其运动学分析[J].机械工程学报,2017,53(1): 47-54. doi:10.3901/jme.2017.01.047 WU L C, KONG Y X, LI X L. Fully rotational joint underactuated finger mechanism and its kinematics analysis[J]. Journal of Mechanical Engineering, 2017, 53(1): 47-54.
doi: 10.3901/jme.2017.01.047
|
|
|
[11] |
EDMONDSON B J, BOWEN L A, GRAMES C L, et al. Oriceps: origami-inspired forceps[C]//ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Snowbird, Utah, Sep. 16-18, 2013.
|
|
|
[12] |
MINTCHEV S, SHINTAKE J, FLOREANO D. Bioinspired dual-stiffness origami[J]. Science Robotics, 2018, 3(20): eaau0275.
|
|
|
[13] |
杨名远,马家耀,李建民,等.基于厚板折纸理论的微创手术钳[J].机械工程学报,2018,54(17):36-45. doi:10.3901/jme.2018.17.036 YANG M Y, MA J Y, LI J M, et al. Thick-panel origami inspired forceps for minimally invasive surgery[J]. Journal of Mechanical Engineering, 2018, 54(17): 36-45.
doi: 10.3901/jme.2018.17.036
|
|
|
[14] |
KAMRAVA S, MOUSANEZHAD D, FELTON S M, et al. Programmable origami strings[J]. Advanced Materials Technologies, 2018, 3(3): 1700276.
|
|
|
[15] |
SHEPHERD R F, ILIEVSKI F, CHOI W, et al. Multigait soft robot[J]. PNAS, 2011, 108(51): 20400-20403.
|
|
|
[16] |
MARCHESE A D, KATZSCHMANN R K, RUS D. A recipe for soft fluidic elastomer robots[J]. Soft Robotics, 2015, 2(1): 7-25.
|
|
|
[17] |
HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials, 2017, 29(13): 1603483.
|
|
|
[18] |
YASUDA H, JOHNSON K, ARROYOS V, et al. Leaf-like origami with bistability for self-adaptive grasping motions[J]. Soft Robotics, 2022, 9(5): 938-947.
|
|
|
[19] |
JIANG Y K, LI Y T, LIU K, et al. Ultra-tunable bistable structures for universal robotic applications[J]. Cell Reports Physical Science, 2023, 4(5): 101365.
|
|
|
[20] |
LIN Y, ZHANG C, TANG W, et al. A bioinspired stress-response strategy for high-speed soft grippers[J]. Advanced Science, 2021, 8(21): 2102539.
|
|
|
[21] |
ZHANG Y, ZHANG W, GAO P, et al. Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation[J]. Nature Communications, 2022, 13(1): 7700.
|
|
|
[22] |
ARRIETA A F, ROJAS S, BOSTON D M. Actuation simplification for grippers based on bioinspired spring origami[C]//Bioinspiration, Biomimetics, and Bioreplication IX. Denver, Mar. 3-7, 2019.
|
|
|
[23] |
FABER J A, ARRIETA A F, STUDART A R. Bioinspired spring origami[J]. Science, 2018, 359(6382): 1386-1391.
|
|
|
[24] |
MA J Y, CHAI S B, CHEN Y. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures[J]. Mechanics of Materials, 2022, 168: 104269.
|
|
|
[25] |
MELONI M, CAI J G, ZHANG Q, et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools[J]. Advanced Science, 2021, 8(13): 2000636.
|
|
|
[26] |
HUANG L, ZENG P, YIN L R, et al. Design and kinematic analysis of a rigid-origami-based underwater sampler with deploying-encircling motion[J]. Mechanism and Machine Theory, 2022, 174: 104886.
|
|
|
[27] |
LIU B, LIAO Y M, YANG Y W, et al. Design and analysis of reconfigurable and deployable thin-walled architectural equipment inspired by Mirror-Miura origami patterns[J]. Engineering Structures, 2023, 286: 116059.
|
|
|
[28] |
CHEN Y, FENG H J, MA J Y, et al. Symmetric waterbomb origami[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2190): 20150846.
|
|
|
[29] |
ZHANG X, CHEN Y. Vertex-splitting on a diamond origami pattern[J]. Journal of Mechanisms and Robotics, 2019, 11(3): 031014.
|
|
|
[30] |
CHEN G M, ZHANG S Y, LI G. Multistable behaviors of compliant sarrus mechanisms[J]. Journal of Mechanisms and Robotics, 2013, 5(2): 021005.
|
|
|