Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (4): 465-472    DOI: 10.3785/j.issn.1006-754X.2024.03.216
Robotic and Mechanism Design     
Design of passively-triggered bistable robotic hand based on origami
Hezhou LI1(),Jie FANG2,Wu QIAN2,Long HUANG1(),Tingcong XIE1,Jintao XU1
1.College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
2.Hunan Electric Power Transmission and Transformation Engineering Company Limited, Changsha 410118, China
Download: HTML     PDF(2800KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Conventional robotic hands usually require drives to continuously provide torque or force to maintain grasping state. If the drive fails, the robotic hand cannot grasp the object stably. To solve these problems, a passively-triggered bistable robotic hand based on origami is proposed. The robotic hand was composed of a grasping mechanism with single-degree-of-freedom and a driving mechanism with bistable characteristics. Based on the kinematics models of the grasping mechanism and driving mechanism, the structure of robotic hand was designed according to the requirements of grasping state, and the energy barrier could be adjusted flexibly by setting the stiffness parameters of the torsion spring. Finally, the drop capture experiments were carried out to verify the grasping performance of the designed robotic hand. The results showed that when the drop height was 400 mm, the grasping motion of the robotic hand was not triggered; When the drop height was 440 mm, the robotic hand successfully grasped the object; When the drop height was 480 mm, the robotic hand failed to grasp the object although the grasping motion was triggered. The experimental results not only validate the ability of robotic hand to grasp objects of a certain size stably without driving, but also reveal the existence of energy barriers under different external shocks. The passive-triggered bistable robotic hand based on origami has potential applications in passive and adaptive robots.



Key wordsrobotic hand      bistable characteristics      grasping mechanism      driving mechanism      passively-triggered     
Received: 20 November 2023      Published: 26 August 2024
CLC:  TH 112  
Corresponding Authors: Long HUANG     E-mail: 499763313@qq.com;huanglong-in@foxmail.com
Cite this article:

Hezhou LI,Jie FANG,Wu QIAN,Long HUANG,Tingcong XIE,Jintao XU. Design of passively-triggered bistable robotic hand based on origami. Chinese Journal of Engineering Design, 2024, 31(4): 465-472.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.216     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I4/465


基于折纸的被动触发双稳态机器人手设计

传统机器人手通常需要驱动器连续地提供保持抓握状态的扭矩或力。若驱动器失效,则机器人手无法稳定地抓取物体。针对上述问题,提出了一种基于折纸的被动触发双稳态机器人手。该机器人手由具有单自由度的抓握机构和具有双稳态特性的驱动机构组成。基于抓握机构和驱动机构的运动学模型,结合抓握状态的要求对机器人手的结构进行了设计,可通过设置扭转弹簧的刚度参数来实现对能量壁垒的灵活调整。最后,通过开展跌落捕获实验来验证所设计机器人手的抓握性能。结果表明,当跌落高度为400 mm时,机器人手的抓握运动未被触发;当跌落高度为440 mm时,机器人手成功抓握物体;当跌落高度为480 mm时,机器人手虽被触发了抓握运动但未能抓住物体。实验结果不仅验证了机器人手在无驱动条件下稳定抓取特定大小物体的能力,还揭示了不同外部冲击下能量壁垒的存在。基于折纸的被动触发双稳态机器人手在被动式和自适应机器人中具有潜在应用前景。


关键词: 机器人手,  双稳态特性,  抓握机构,  驱动机构,  被动触发 
Fig.1 Schematic of grasping origami pattern
Fig.2 Four-vertex crease pattern and its equivalent spherical 4R linkage mechanism
Fig.3 Equivalent spherical 4R linkage mechanism of grasping origami pattern
Fig.4 Driving mechanism for grasping motion
Fig.5 Kinematic diagram of limb Ⅰ and limb Ⅲ in driving mechanism
Fig.6 Variation curve of elastic energy of limb Ⅰ and limb Ⅲ
Fig.7 Kinematic diagram of limb Ⅱ and limb Ⅳ in driving mechanism
Fig.8 Variation curve of elastic energy of robotic hand in the design case
Fig.9 Bistable robotic hand prototype
Fig.10 Drop capture experimental device for bistable robotic hand
[1]   苏靖惟,张文增.单链传动双齿条平夹间接自适应机器人手研制[J].机械传动,2019,43(2):154-161.
SU J W, ZHANG W Z. Development of a parallel and indirectly self-adaptive robot hand with single-chain transmission of double-rack mechanism[J]. Journal of Mechanical Transmission, 2019, 43(2): 154-161.
[2]   马涛,杨冬,赵海文,等.一种新型欠驱动机械手爪的抓取分析和优化设计[J].机器人,2020,42(3):354-364.
MA T, YANG D, ZHAO H W, et al. Grasp analysis and optimal design of a new underactuated manipulator[J]. Robot, 2020, 42(3): 354-364.
[3]   CHEN W R, XIONG C H, WANG Y N. Analysis and synthesis of underactuated compliant mechanisms based on transmission properties of motion and force[J]. IEEE Transactions on Robotics, 2020, 36(3): 773-788.
[4]   万昌雄.变胞三指灵巧手的运动分析与控制系统设计[D].天津:天津大学,2018. doi:10.17775/cseejpes.2018.00570
WAN C X. Motion analysis and control system design of a three-fingered metamorphic robotic hand[D]. Tianjin: Tianjin University, 2018.
doi: 10.17775/cseejpes.2018.00570
[5]   TOWNSEND W. The BarrettHand grasper-programmably flexible part handling and assembly[J]. Industrial Robot, 2000, 27(3): 181-188.
[6]   LI G X, ZHANG C, ZHANG W Z, et al. Coupled and self-adaptive under-actuated finger with a novel S-coupled and secondly self-adaptive mechanism[J]. Journal of Mechanisms and Robotics, 2014, 6(4): 041010.
[7]   梁达尧,张文增.平夹自适应欠驱动手的参数优化与稳定性分析[J].机器人,2017,39(3):282-291.
LIANG D Y, ZHANG W Z. Parameters optimization and stability analysis for a parallel and self-adaptive underactuated hand[J]. Robot, 2017, 39(3): 282-291.
[8]   PIAZZA C, GRIOLI G, CATALANO M, et al. A century of robotic hands[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2(1): 1-32.
[9]   TEOH Z E, PHILLIPS B T, BECKER K P, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 3(20): eaat5276.
[10]   吴立成,孔岩萱,李霞丽.全转动关节欠驱动手指机构及其运动学分析[J].机械工程学报,2017,53(1): 47-54. doi:10.3901/jme.2017.01.047
WU L C, KONG Y X, LI X L. Fully rotational joint underactuated finger mechanism and its kinematics analysis[J]. Journal of Mechanical Engineering, 2017, 53(1): 47-54.
doi: 10.3901/jme.2017.01.047
[11]   EDMONDSON B J, BOWEN L A, GRAMES C L, et al. Oriceps: origami-inspired forceps[C]//ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Snowbird, Utah, Sep. 16-18, 2013.
[12]   MINTCHEV S, SHINTAKE J, FLOREANO D. Bioinspired dual-stiffness origami[J]. Science Robotics, 2018, 3(20): eaau0275.
[13]   杨名远,马家耀,李建民,等.基于厚板折纸理论的微创手术钳[J].机械工程学报,2018,54(17):36-45. doi:10.3901/jme.2018.17.036
YANG M Y, MA J Y, LI J M, et al. Thick-panel origami inspired forceps for minimally invasive surgery[J]. Journal of Mechanical Engineering, 2018, 54(17): 36-45.
doi: 10.3901/jme.2018.17.036
[14]   KAMRAVA S, MOUSANEZHAD D, FELTON S M, et al. Programmable origami strings[J]. Advanced Materials Technologies, 2018, 3(3): 1700276.
[15]   SHEPHERD R F, ILIEVSKI F, CHOI W, et al. Multigait soft robot[J]. PNAS, 2011, 108(51): 20400-20403.
[16]   MARCHESE A D, KATZSCHMANN R K, RUS D. A recipe for soft fluidic elastomer robots[J]. Soft Robotics, 2015, 2(1): 7-25.
[17]   HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials, 2017, 29(13): 1603483.
[18]   YASUDA H, JOHNSON K, ARROYOS V, et al. Leaf-like origami with bistability for self-adaptive grasping motions[J]. Soft Robotics, 2022, 9(5): 938-947.
[19]   JIANG Y K, LI Y T, LIU K, et al. Ultra-tunable bistable structures for universal robotic applications[J]. Cell Reports Physical Science, 2023, 4(5): 101365.
[20]   LIN Y, ZHANG C, TANG W, et al. A bioinspired stress-response strategy for high-speed soft grippers[J]. Advanced Science, 2021, 8(21): 2102539.
[21]   ZHANG Y, ZHANG W, GAO P, et al. Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation[J]. Nature Communications, 2022, 13(1): 7700.
[22]   ARRIETA A F, ROJAS S, BOSTON D M. Actuation simplification for grippers based on bioinspired spring origami[C]//Bioinspiration, Biomimetics, and Bioreplication IX. Denver, Mar. 3-7, 2019.
[23]   FABER J A, ARRIETA A F, STUDART A R. Bioinspired spring origami[J]. Science, 2018, 359(6382): 1386-1391.
[24]   MA J Y, CHAI S B, CHEN Y. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures[J]. Mechanics of Materials, 2022, 168: 104269.
[25]   MELONI M, CAI J G, ZHANG Q, et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools[J]. Advanced Science, 2021, 8(13): 2000636.
[26]   HUANG L, ZENG P, YIN L R, et al. Design and kinematic analysis of a rigid-origami-based underwater sampler with deploying-encircling motion[J]. Mechanism and Machine Theory, 2022, 174: 104886.
[27]   LIU B, LIAO Y M, YANG Y W, et al. Design and analysis of reconfigurable and deployable thin-walled architectural equipment inspired by Mirror-Miura origami patterns[J]. Engineering Structures, 2023, 286: 116059.
[28]   CHEN Y, FENG H J, MA J Y, et al. Symmetric waterbomb origami[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2190): 20150846.
[29]   ZHANG X, CHEN Y. Vertex-splitting on a diamond origami pattern[J]. Journal of Mechanisms and Robotics, 2019, 11(3): 031014.
[30]   CHEN G M, ZHANG S Y, LI G. Multistable behaviors of compliant sarrus mechanisms[J]. Journal of Mechanisms and Robotics, 2013, 5(2): 021005.
[1] ZHANG Shu-yang, ZHANG Pu-zhen, HE Yong-qiang, PAN Bo, MENG Yu-ming. Research on integrated shafting driving mechanism of satellite antenna[J]. Chinese Journal of Engineering Design, 2019, 26(4): 469-476.
[2] WU Yao, CAO Ju-jiang, LIU Yan-song, YAN Wei-liang. Research of the rigid-flexible coupling dynamic balancing on crank-group driving mechanism[J]. Chinese Journal of Engineering Design, 2016, 23(5): 468-480.