Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (5): 663-669    DOI: 10.3785/j.issn.1006-754X.2024.03.195
Tribology and Surface/Interface Technology     
Study on statics properties of steel/aluminum clinch-bonded composite joint under corrosive environment
Guiqiu YANG(),Baoying XING(),Kai ZENG,Xiaocong HE,Tengfei ZHAO
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML     PDF(3193KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore the statics properties of aluminum alloy clinched joints and the effect of the corrosion on the statics properties of clinch-bonded composite joints, the AA5052 aluminum alloy and the DP590 dual-phase steel were used as test plates to prepare the clinched joints and the clinch-bonded composite joints with aluminum/aluminum and steel/aluminum combinations, respectively. The statics properties and the failure mechanism of joints were analyzed by the tensile test and the scanning electron microscope. Then, the 0.02 mol/L NaHSO3 solution was used as corrosion medium to perform alternate immersion accelerated corrosion tests on the joint specimens with the best statics properties. The results showed that the statics properties of clinched joints and clinch-bonded composite joints could be improved by selecting the higher strength plate as the upper plate, and the failure modes of the two joints were optimized from the neck-fracture to the mixing of bottom pull-out and neck-fracture. The use of adhesive could improve the statics properties of clinched joints, but had no significant effect on their failure mode. In the acidic environment, the failure mode of the steel/aluminum clinch-bonded composite joints gradually transformed from the mixing of bottom pull-out and neck-fracture to the neck-fracture, indicating that the corrosion aging would cause the neck of the upper plate to become thin, and make it become a weak link in the shear transfer process and fracture. During the corrosion process, the peak load of the steel/aluminum clinch-bonded composite joint showed a decreasing trend, and the energy absorption value showed a "step" decline. The decrease of peak load and energy absorption value of the steel/aluminum clinch-bonded composite joint was small in the medium and long corrosion period, which indicated that the corrosion accumulated on the surface of the plate could inhibit the corrosion effect of joints. The research results can provide reference for the subsequent design and evaluation of automotive lightweight.



Key wordsclinched joint      clinch-bonded composite joint      corrosion test      failure form      statics property     
Received: 28 August 2023      Published: 30 October 2024
CLC:  TH 131.1  
Corresponding Authors: Baoying XING     E-mail: 2762510721@qq.com;xbb0808@163.com
Cite this article:

Guiqiu YANG,Baoying XING,Kai ZENG,Xiaocong HE,Tengfei ZHAO. Study on statics properties of steel/aluminum clinch-bonded composite joint under corrosive environment. Chinese Journal of Engineering Design, 2024, 31(5): 663-669.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.195     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I5/663


腐蚀环境下钢/铝压印-胶接复合接头的静力学性能研究

为探究铝合金压印接头的静力学性能以及腐蚀对压印-胶接复合接头(简称压-胶复合接头)静力学性能的影响,以AA5052铝合金和DP590双相钢为试验板材,分别制备铝/铝组合及钢/铝组合的压印接头和压-胶复合接头,对各组接头开展拉伸试验,并结合扫描电镜分析其静力学性能和失效机理。随后,以0.02 mol/L的NaHSO3溶液作为腐蚀介质,对静力学性能最优的接头试件进行周浸加速腐蚀试验。结果表明:选用强度较大的板材作为上板可以提高压印接头和压-胶复合接头的静力学性能,可将2种接头的失效形式由颈部断裂优化为底部脱落与颈部断裂混合。使用胶黏剂可提升压印接头的静力学性能,但对其失效形式无显著影响。在酸性环境中,钢/铝压-胶复合接头的失效形式由底部脱落与颈部断裂混合逐渐转变为颈部断裂,说明腐蚀老化会导致接头上板的颈部变薄,使其成为剪力传递过程中的薄弱环节而发生断裂。在腐蚀过程中,钢/铝压-胶复合接头的峰值载荷呈递减趋势,能量吸收值呈“台阶”式下降。在中长腐蚀周期下,钢/铝压-胶复合接头的峰值载荷与能量吸收值的下降幅度较小,表明堆积于板材表面的腐蚀物会抑制接头的腐蚀效应。研究结果可为后续的汽车轻量化设计和评估提供参考。


关键词: 压印接头,  压印-胶接复合接头,  腐蚀试验,  失效形式,  静力学性能 
材料弹性模量/GPa抗拉强度/MPa屈服强度/MPa延伸率/%
AA5052铝合金6823120917.5
DP590双相钢21948057518.0
Table 1 Mechanical property parameters of metal sheets
Fig.1 Dimension schematic of clinched joint specimens
Fig.2 Connection process of clinch-bonded composite joint
组号上板胶黏剂下板
AAAA5052铝合金AA5052铝合金
DADP590双相钢AA5052铝合金
JAAAA5052铝合金AA5052铝合金
JDADP590双相钢AA5052铝合金
Table 2 Composition of each group of joints
Fig.3 Failure mode of each group of joints
Fig.4 Load-displacement curve of each group of joints
Fig.5 Fracture morphology of two groups of clinch-bonded composite joints
Fig.6 Energy absorption value of each group of joints
Fig.7 Failure modes of steel/aluminum clinch-bonded composite joints under different corrosion cycles
Fig.8 Load-displacement curves and energy absorption values of steel/aluminum clinch-bonded composite joints under different corrosion cycles
[1]   杨露露, 宋燕利, 辜志强, 等. 钢铝压-胶复合连接接头力学行为与失效机理研究[J]. 机械科学与技术, 2021, 40(7): 1120-1127.
YANG L L, SONG Y L, GU Z Q, et al. Study on mechanical behavior and failure mechanism of steel-aluminum clinch-bonded hybrid joint[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1120-1127.
[2]   黄永宪, 黄体方, 万龙, 等. 铝/钢异种材料搅拌摩擦焊研究进展[J]. 精密成形工程, 2018, 10(1): 23-30.
HUANG Y X, HUANG T F, WAN L, et al. Research progress of dissimilar friction stir welding between aluminium and steel[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 23-30.
[3]   李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44-54. doi:10.3901/JME.2012.18.044
LI Y B, LI Y T, LOU M, et al. Lightweighting of car body and its challenges to joining technologies[J]. Journal of Mechanical Engineering, 2012, 48(18): 44-54.
doi: 10.3901/JME.2012.18.044
[4]   HE X C, ZHANG Y, XING B Y, et al. Mechanical properties of extensible die clinched joints in titanium sheet materials[J]. Materials & Design, 2015, 71: 26-35.
[5]   张越, 卢岩, 彭锐涛, 等. 轻量化材料新型连接工艺与应用现状[J]. 机械工程学报, 2024, 60(4): 259-283.
ZHANG Y, LU Y, PENG R T, et al. New connection technology and application status of lightweight materials[J]. Journal of Mechanical Engineering, 2024, 60(4): 259-283.
[6]   斯日吉模楞, 毛培. 资源型地区自然资源对经济增长影响的实证分析: 基于2000—2016年中国重点煤炭城市样本[J]. 自然资源学报, 2019, 34(12): 2491-2503. doi:10.31497/zrzyxb.20191201
SI R, MAO P. Empirical analysis of the influence of natural resources on regional economic growth: based on the sample of key coal cities in China from 2000 to 2016[J]. Journal of Natural Resources, 2019, 34(12): 2491-2503.
doi: 10.31497/zrzyxb.20191201
[7]   张山寅, 杨俊锋, 芦跃峰, 等. 铝/钢薄板无铆连接接头成形过程及形貌控制[J]. 精密成形工程, 2023, 15(5): 44-53.
ZHANG S Y, YANG J F, LU Y F, et al. Forming process and morphology control of mechanical clinch joint of steel/aluminum sheet[J]. Journal of Netshape Forming Engineering, 2023, 15(5): 44-53.
[8]   雷蕾, 何晓聪, 赵得锁. 铜钢板压印-粘接复合连接的静力学性能及失效机理分析[J]. 昆明理工大学学报(自然科学版), 2017, 42(4): 38-44.
LEI L, HE X C, ZHAO D S. Mechanical properties and fracture mechanism of clinch-bonded hybrid joints on copper alloy and galvanized steel sheets[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(4): 38-44.
[9]   邢保英, 宋娇娇, 赵腾飞, 等. 连接结构对压印及压-粘复合接头力学性能的影响[J]. 塑性工程学报, 2022, 29(12): 77-82.
XING B Y, SONG J J, ZHAO T F, et al. Effect of connection structure on mechanical properties of clinched and clinch-bonded hybrid joints[J]. Journal of Plasticity Engineering, 2022, 29(12): 77-82.
[10]   庄蔚敏, 施宏达, 解东旋, 等. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106.
ZHUANG W M, SHI H D, XIE D X, et al. Thickness distribution of adhesive layer in dissimilar clinch-adhesive hybrid joint with steel and aluminum alloy[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 100-106.
[11]   BALAWENDER T, SADOWSKI T, GOLEWSKI P. Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension[J]. Computational Materials Science, 2012, 64: 270-272.
[12]   CALABRESE L, GALTIERI G, BORSELLINO C, et al. Durability of hybrid clinch-bonded steel/aluminum joints in salt spray environment[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9/12): 3137-3147.
[13]   LEBOZEC N, LEGAC A, THIERRY D. Corrosion performance and mechanical properties of joined automotive materials[J]. Materials and Corrosion, 2012, 63(5): 408-415.
[14]   GAO Y, LIU Z X, WANG P C. Effect of aging on the strength of clinching galvanized SAE1004 steel-to-aluminum AA6111 joints[J]. Journal of Manufacturing Science and Engineering, 2014, 136(4): 041016.
[15]   中国钢铁工业协会. 金属和合金的腐蚀 盐溶液周浸试验: [S]. 北京: 中国标准出版社, 2018: 2-7.
China Iron and Steel Association. Corrosion of metals and alloys: alternate immersion test in salt solution: [S]. Beijing: Standards Press of China, 2018: 2-7.
[16]   CALABRESE L, PROVERBIO E, GALTIERI G, et al. Effect of corrosion degradation on failure mechanisms of aluminium/steel clinched joints[J]. Materials & Design, 2015, 87: 473-481.
[17]   杨进, 邢保英, 何晓聪, 等. 腐蚀环境下自冲铆接头竞争失效机制及力学性能分析[J]. 焊接学报, 2022, 43(7): 69-75, 117.
YANG J, XING B Y, HE X C, et al. Analysis of competitive failure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments[J]. Transactions of the China Welding Institution, 2022, 43(7): 69-75, 117.
[18]   丁平, 肖寒, 陈磊, 等. 退火时间对Ti-6.0Al-3.0Zr-0.5Sn-1.0Mo-1.5Nb-1.0V钛合金组织及力学性能的影响[J]. 工程科学学报, 2022, 44(1): 50-58.
DING P, XIAO H, CHEN L, et al. Effect of annealing time on microstructure and mechanical properties of Ti-6.0Al-3.0Zr-0.5Sn-1.0Mo-1.5Nb-1.0V titanium alloy[J]. Chinese Journal of Engineering, 2022, 44(1): 50-58.
[19]   余童欣, 何晓聪, 高爱凤, 等. 压印接头混合失效形式的静态失效机理分析[J]. 热加工工艺, 2016, 45(13): 150-152, 155.
YU T X, HE X C, GAO A F, et al. Analysis on static failure mechanism of mixed failure mode of clinched joints[J]. Hot Working Technology, 2016, 45(13): 150-152, 155.
[20]   CALABRESE L, PROVERBIO E, POLLICINO E, et al. Effect of galvanic corrosion on durability of aluminium/steel self-piercing rivet joints[J]. Corrosion Engineering, Science and Technology, 2015, 50(1): 10-17.
[21]   黄志超, 胡兆骁, 刘帅红, 等. SPFC440钢/5052铝自冲铆接头与胶铆复合接头腐蚀性能对比[J]. 中国机械工程, 2022, 33(11): 1345-1352.
HUANG Z C, HU Z X, LIU S H, et al. Comparison of corrosion properties of SPFC440 steel/5052 aluminum self-piercing riveting joints and adhesive bond-riveted hybrid joints[J]. China Mechanical Engineering, 2022, 33(11): 1345-1352.
No related articles found!