Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (5): 653-662    DOI: 10.3785/j.issn.1006-754X.2024.04.130
Tribology and Surface/Interface Technology     
Analysis of influence of parameters of adhesive connection structure of gyroscope float assembly on static and dynamic performances
Guoliang GAO1,2(),Yiming JIA1,2,Chaoshi WANG1,2,Zhifu PAN1,2,Chen WANG1,2,Jun HONG1,2,Qiyin LIN1,2()
1.School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
Download: HTML     PDF(3431KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to reduce the assembly stress in the adhesive connection structure of high precision gyroscope float assembly and ensure the structural stability, the influence of the adhesive connection structural parameters on its static and dynamic properties was studied. The finite element model of the adhesive connection structure of the gyroscope float assembly was developed, and the uniformity of shear stress distribution and natural frequency were used to characterize the static and dynamic properties of the adhesive connection structure, and the influences of the adhesive layer thickness, adhesive layer length, buoy thickness and the adhesive layer shape on the static and dynamic properties of the structure were studied. The results showed that increasing the thickness and length of adhesive layer in a certain range and adopting parabolic adhesive layer could help to enlarge the advantageous bearing area of adhesive layer and improve the uniformity of stress distribution effectively. Additionally, reasonable increase of buoy thickness would decrease the first six natural frequencies of the adhesive connection structure with a greater reduction in higher orders. Conversely, the adhesive layer thickness had little influence on the dynamic property of adhesive connection structure. The research results have a certain guiding significance for the design and research of gyroscope components.



Key wordsadhesive connection      assembly structure      assembly connecting surface      static performance      dynamic performance     
Received: 07 April 2024      Published: 30 October 2024
CLC:  V 241.5  
Corresponding Authors: Qiyin LIN     E-mail: 1272997622@qq.com;linqiyin@xjtu.edu.cn
Cite this article:

Guoliang GAO,Yiming JIA,Chaoshi WANG,Zhifu PAN,Chen WANG,Jun HONG,Qiyin LIN. Analysis of influence of parameters of adhesive connection structure of gyroscope float assembly on static and dynamic performances. Chinese Journal of Engineering Design, 2024, 31(5): 653-662.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.130     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I5/653


陀螺仪浮子组件胶接结构参数对结构静动态性能影响分析

为了减小高精度陀螺仪浮子组件胶接结构的装配应力,保证结构的稳定性,开展了胶接结构参数对其静动态性能的影响研究。建立了陀螺仪浮子组件胶接结构的有限元模型,并分别以剪切应力分布的均匀性和固有频率作为胶接结构静态和动态性能的表征,研究了胶层厚度、胶层长度、浮筒厚度和胶层形状等对结构静态和动态性能的影响。研究结果表明:在一定范围内增大胶层厚度和长度,并采用抛物线形胶层有助于扩大胶层的优势承载区域,有效改善应力分布的均匀性;合理增大浮筒厚度能使胶接结构的前六阶固有频率下降,且阶数越大,下降幅度越大;胶层厚度对胶接结构动态性能的影响较小。研究结果对陀螺仪组件的设计和研究具有一定的指导意义。


关键词: 胶粘连接,  装配结构,  装配连接表面,  静态性能,  动态性能 
Fig.1 Two-dimensional simplified model of single lap adhesive joint
Fig.2 Shear stress and stripping stress in adhesive layer of single lap adhesive joint
Fig.3 Structure of gyroscope float assembly
Fig.4 Schematic of two-dimensional simplified structure of gyroscope float assembly
Fig.5 Finite element models of adhesive connection structure and adhesive layer
Fig.6 Nephogram of shear stress distribution in adhesive layer
Fig.7 Variation curve of axial shear stress in adhesive layer
Fig.8 Variation curves of shear stress in adhesive layer with different adhesive layer thicknesses
Fig.9 Variation curves of extreme value and variance of shear stress in adhesive layer with different adhesive layer thicknesses
h/mmτmax/MPaτmin/MPaS2/MPa2
0.17.701.354.31
0.25.841.971.60
0.35.012.260.85
0.54.642.430.53
0.74.012.650.20
1.03.732.750.11
Table 1 Extreme values and variances of shear stress in adhesive layer with different adhesive layer thicknesses
Fig.10 Variation curves of shear stress in adhesive layer with different adhesive layer lengths
Fig.11 Variation curves of extreme value and variance of shear stress in adhesive layer with different adhesive layer lengths
L/mmτmax/MPaτmin/MPaS2/MPa2
5.016.755.4720.19
7.58.893.114.25
105.841.971.60
153.331.450.30
202.361.060.12
Table 2 Extreme values and variances of shear stress in adhesive layer with different adhesive layer lengths
Fig.12 Variation curves of shear stress in adhesive layer with different buoy thicknesses
Fig.13 Variation curves of extreme value and variance of shear stress in adhesive layer with different buoy thicknesses
D1/mmτmax/MPaτmin/MPaS2/MPa2
14.642.330.48
25.372.151.08
35.841.971.60
56.092.431.51
76.172.671.29
106.272.831.21
Table 3 Extreme values and variances of shear stress in adhesive layer with different buoy thicknesses
Fig.14 Schematic of adhesive layer shape
Fig.15 Variation curves of shear stress in adhesive layer with different adhesive layer shapes
Fig.16 Variation curves of extreme value and variance of shear stress in adhesive layer with different adhesive layer shapes
胶层形状hmin/hmaxτmax/MPaτmin/MPaS2/MPa2
圆弧形1.004.642.430.53
0.754.002.100.39
0.503.651.610.58
0.254.311.021.28
抛物线形1.006.221.951.54
0.754.092.030.38
0.504.082.710.14
0.253.742.550.21
正弦形1.006.221.951.54
0.756.242.001.14
0.506.191.980.85
0.256.001.760.99
Table 4 Extreme values and variances of shear stress in adhesive layer with different adhesive layer shapes
Fig.17 Comparison of the first six natural frequencies of adhesive connection structure with different adhesive layer thicknesses
Fig.18 Change of first order natural frequency of adhesive connection structure with different adhesive layer thicknesses
Fig.19 Comparison of the first six natural frequencies of adhesive connection structure with different adhesive layer lengths
Fig.20 Change of first order natural frequency of adhesive connection structure with different adhesive layer lengths
Fig.21 Comparison of the first six natural frequencies of adhesive connection structure with different buoy thicknesses
Fig.22 Change of first order natural frequency of adhesive connection structure with different buoy thicknesses
[1]   赵云峰. 高性能胶黏剂密封剂在航天工业领域的应用[J]. 化学与粘合, 2014, 36(6): 446-450.
ZHAO Y F. Application of high-performance adhesives and sealants in aerospace industry[J]. Chemistry and Adhesion, 2014, 36(6): 446-450.
[2]   VOLKERSEN O. Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten[J]. Luftfahrtforschung, 1938, 15(1/2): 41-47.
[3]   GOLAND M, REISSNER E, 陈名甫. 胶合接点内的应力[J]. 力学季刊, 1966(4): 47-59.
GOLAND M, REISSNER E, CHEN M F. Stress in bonded joints[J]. Chinese Quarterly of Mechanics, 1966(4): 47-59.
[4]   HART-SMITH L J. Adhesive-bonded single-lap joints[R]. Washington: Douglas Aircraft Company, NASA, 1973.
[5]   OJALVO I U, EIDINOFF H L. Bond thickness effects upon stresses in single-lap adhesive joints[J]. AIAA Journal, 1978, 16(3): 204-211.
[6]   TSAI M Y, OPLINGER D W, MORTON J. Improved theoretical solutions for adhesive lap joints[J]. International Journal of Solids and Structures, 1998, 35(12): 1163-1185.
[7]   ALLMAN D J. A theory for elastic stresses in adhesive bonded lap joints[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1977, 30(4): 415-436.
[8]   CHEN D, CHENG S. An analysis of adhesive-bonded single-lap joints[J]. Journal of Applied Mechanics, 1983, 50(1): 109-115.
[9]   RENTON W J, VINSON J R. Analysis of adhesively bonded joints between panels of composite materials[J]. Journal of Applied Mechanics, 1977, 44(1): 101-106.
[10]   DELALE F, ERDOGAN F, AYDINOGLU M N. Stresses in adhesively bonded joints: A closed-form solution[J]. Journal of Composite Materials, 1981, 15(3): 249-271.
[11]   ADAMS R D, MALLICK V. A method for the stress analysis of lap joints[J]. The Journal of Adhesion, 1992, 38(3/4): 199-217.
[12]   ADAMS R D, PEPPIATT N A. Stress analysis of adhesive-bonded lap joints[J]. Journal of Strain Analysis for Engineering Design, 1974, 9(3): 185-196.
[13]   YANG C, PANG S S. Stress-strain analysis of single-lap composite joints under tension[J]. Journal of Engineering Materials and Technology, 1996, 118(2): 247-255.
[14]   BIGWOOD D A, CROCOMBE A D. Elastic analysis and engineering design formulae for bonded joints[J]. International Journal of Adhesion and Adhesives, 1989, 9(4): 229-242.
[15]   LUO Q T, TONG L Y. Linear and higher order displacement theories for adhesively bonded lap joints[J]. International Journal of Solids and Structures, 2004, 41(22/23): 6351-6381.
[16]   LUO Q T, TONG L Y. Analytical solutions for adhesive composite joints considering large deflection and transverse shear deformation in adherends[J]. International Journal of Solids and Structures, 2008, 45(22/23): 5914-5935.
[17]   LUO Q T, TONG L Y. Analytical solutions for nonlinear analysis of composite single-lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(2): 144-154.
[18]   WANG J L, ZHANG C. Three-parameter, elastic foundation model for analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 495-502.
[19]   ZHAO X, ADAMS R D, SILVA L F M DA. A new method for the determination of bending moments in single lap joints[J]. International Journal of Adhesion and Adhesives, 2010, 30(2): 63-71.
[20]   DARWISH S M. Analysis of weld-bonded dissimilar materials[J]. International Journal of Adhesion and Adhesives, 2004, 24(4): 347-354.
[21]   GUNNION A J, HERSZBERG I. Parametric study of scarf joints in composite structures[J]. Composite Structures, 2006, 75(1/2/3/4): 364-376.
[22]   LANG T P, MALLICK P K. Effect of spew geometry on stresses in single lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 1998, 18(3): 167-177.
[23]   OSNES H, ANDERSEN A. Computational analysis of geometric nonlinear effects in adhesively bonded single lap composite joints[J]. Composites Part B: Engineering, 2003, 34(5): 417-427.
[24]   JOUSSET P, RACHIK M. Pressure-dependent plasticity for structural adhesive constitutive modeling[J]. Journal of Adhesion Science and Technology, 2010, 24(11/12): 1995-2010.
[25]   CUI J, WANG R, SINCLAIR A N, et al. A calibrated finite element model of adhesive peeling[J]. International Journal of Adhesion and Adhesives, 2003, 23(3): 199-206.
[26]   SÜLÜ İ Y. Mechanical behavior of single-lap and double-lap adhesive joined composite parts[J]. Materials Testing, 2017, 59(11/12): 1019-1026.
[27]   WANG H, HAO X F, YAN K, et al. Ultrasonic vibration-strengthened adhesive bonding of CFRP-to-aluminum joints[J]. Journal of Materials Processing Technology, 2018, 257: 213-226.
[28]   WANG H, GAO C, CHEN Y Z, et al. Ultrasonic vibration-strengthened adhesive bonding of CFRP/aluminum alloy joints with anodizing pretreatment[J]. Journal of Metals, 2020, 72(10): 3472-3482.
[1] Hongtai XIE,Hong WANG,Wei CHAI. Design and simulation analysis of new wind resistance braking device for high-speed trains[J]. Chinese Journal of Engineering Design, 2023, 30(2): 244-253.
[2] LI Wen-juan, CHEN Xiao-xuan, GONG Li-jiao, CHEN Xu-dong. Design of an optimal control method based on the dynamic performance space[J]. Chinese Journal of Engineering Design, 2014, 21(5): 456-468.
[3] XIE Ying-Jun, LOU Xiang-Ya, JIN Bo, LIU Jin-Rong. Design and study on high speed on/off valve in electro-hydraulic variable valve system[J]. Chinese Journal of Engineering Design, 2010, 17(2): 138-145.