Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (5): 641-652    DOI: 10.3785/j.issn.1006-754X.2024.04.138
Tribology and Surface/Interface Technology     
Study on influence of surface texture on lubrication characteristics of liquid sodium hybrid plain bearing
Xianming GAO(),Jinzhao NIU,Zhixiang CAI,Xiaosong REN
College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
Download: HTML     PDF(5978KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As the secondary loop main circulation pumps progress towards larger capacity and higher loads, higher requirements are placed on the lubrication characteristics of its key load-bearing component, which is the liquid sodium hybrid plain bearing (referred to as liquid sodium bearing). To further improve the lubrication characteristics of liquid sodium bearing, the influence of surface texture on its lubrication characteristics was studied through the combination method of numerical simulation and test. Firstly, the surface textures with circular, square and rhombic shapes were designed. After simplifying the friction pair model of liquid sodium bearing, the lubrication characteristics of three surface textures under different depths and different spacing were analyzed by numerical simulation method. Then, the influence of laser processing parameters on the surface texture preparation was explored, and the friction pair specimens with surface textures of different shapes and different spacing were prepared for friction and wear testing. Finally, the liquid sodium bearing model incorporating surface textures was analyzed. The results indicated that the surface textures with different shapes had optimal depth and spacing, and the rhombic texture had the best lubrication characteristics when the dimensionless depth was 2 and the spacing was 1.4 mm. After incorporating rhombic textures, the bearing capacity and stiffness coefficient of liquid sodium bearing increased by 16.7% and 9.3%, respectively, and the friction coefficient decreased by 13.1%. The research results are of great significance for the safe and reliable operation of secondary loop main circulation pumps and sodium-cooled fast reactor systems, and can provide important reference for the optimization design and localization of similar bearings.



Key wordsliquid sodium hybrid plain bearing      surface texture      friction and wear      lubrication characteristics     
Received: 07 May 2024      Published: 30 October 2024
CLC:  TH 133.31  
Cite this article:

Xianming GAO,Jinzhao NIU,Zhixiang CAI,Xiaosong REN. Study on influence of surface texture on lubrication characteristics of liquid sodium hybrid plain bearing. Chinese Journal of Engineering Design, 2024, 31(5): 641-652.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.138     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I5/641


表面织构对液钠动静压滑动轴承润滑特性的影响研究

随着二回路主循环泵不断朝大容量、高负荷的方向发展,对其关键承载部件——液钠动静压滑动轴承(简称液钠轴承)的润滑特性提出了更高的要求。为了进一步提升液钠轴承的润滑特性,通过数值模拟和试验相结合的方法研究了表面织构对其润滑特性的影响。首先,设计了圆形、正方形和菱形三种不同形状的表面织构,在对液钠轴承摩擦副模型进行简化后,采用数值模拟方法分析了3种表面织构在不同深度和不同间距下所呈现的润滑特性。然后,探究了激光加工参数对表面织构制备的影响,并制备了带有不同形状、不同间距表面织构的摩擦副试样,用于开展摩擦磨损试验。最后,对计入表面织构的液钠轴承模型进行了分析。结果表明:不同形状的表面织构均存在最优深度和间距,其中菱形织构在无量纲深度为2、间距为1.4 mm时具有最佳的润滑特性;计入菱形织构后液钠轴承的承载力和刚度系数分别提升了16.7%和9.3%,摩擦系数降低了13.1%。研究结果对二回路主循环泵及钠冷快堆系统的安全可靠运行具有重要意义,可为同类轴承的优化设计和国产化提供重要参考。


关键词: 液钠动静压滑动轴承,  表面织构,  摩擦磨损,  润滑特性 
Fig.1 Fluid domain model of a single circular texture and its boundary conditions
Fig.2 Pressure nephogram of moving wall of fluid domain of a single circular texture
Fig.3 Structure of liquid sodium bearing
Fig.4 Corresponding relationship between feedback cavity and hydrostatic oil cavity
参数数值
轴承直径/mm440.8
半径间隙/mm0.2
总宽度/mm905
反馈腔宽度/mm45
静压油腔宽度/mm528.40
反馈腔包角/(°)17
静压油腔包角/(°)32.68
反馈腔及静压油腔数量/个6
高压液槽及回液槽宽度/mm15
静压油腔深度/mm13
Table 1 Structural parameters of liquid sodium bearing
Fig.5 Liquid sodium bearing model incorporating surface textures
Fig.6 Simplified friction pair model
Fig.7 Three surface texture models with different shapes
Fig.8 Structural parameters of circular texture
Fig.9 Structural parameters of square texture
Fig.10 Structural parameters of rhombic texture
Fig.11 Effect of dimensionless depth of surface texture on lubrication characteristics
Fig.12 Pressure distribution of central section of surface texture under different dimensionless depths
Fig.13 Pressure nephogram of moving wall of circular texture fluid domain with H=2.0
Fig.14 Pressure nephogram of moving wall of square texture fluid domain with H=2.0
Fig.15 Pressure nephogram of moving wall of rhombic texture fluid domain with H=2.0
Fig.16 Pressure distribution of central section of surface texture under different spacing
Fig.17 Effect of spacing of surface texture on lubrication characteristics
Fig.18 Pressure nephogram of moving wall of circular texture fluid domain with L=1.2 mm
Fig.19 Pressure nephogram of moving wall of square texture fluid domain with L=1.4 mm
Fig.20 Pressure nephogram of moving wall of rhombic texture fluid domain with L=1.4 mm
Fig.21 Principle of pin-disk reciprocating friction and wear test
试验编号表面织构形状无量纲深度H间距L/mm
1圆形织构2.01.0
21.2
31.4
41.6
5正方形织构2.01.0
61.2
71.4
81.6
9菱形织构2.01.0
101.2
111.4
121.6
13无织构
Table 2 Friction and wear test schemes
试验编号激光功率/W扫描速度/(m/s)
11020
21040
31080
410100
510100
612100
714100
816100
Table 3 Experimental schemes for exploring laser processing parameters
Fig.22 Circular textures with different spacing
Fig.23 Square textures with different spacing
Fig.24 Rhombic textures with different spacing
Fig.25 Rtec-MFT5000 multi-function friction and wear test machine
Fig.26 Friction coefficient of frictional surface with circular texture
Fig.27 Friction coefficient of frictional surface with square texture
Fig.28 Friction coefficient of frictional surface with rhombic texture
计入前后承载力/N

刚度系数/

(108 N/m)

摩擦系数
相对误差/%16.79.313.1
计入前32 356.45.820 60.016 10
计入后37 759.96.361 90.013 99
Table 4 Comparison of lubrication characteristics of liquid sodium bearing before and after incorporating surface texture
[1]   PRASAD REDDY G V, KARTHIK V, LATHA S, et al. Core materials for sodium-cooled fast reactors: past to present and future prospects[J]. Materials Performance and Characterization, 2022, 11(2): 2-52.
[2]   BOBROV E A, ANDRIANOVA E A, BLANDINSKIY V Y, et al. The use of thorium in a nuclear power system with thermal and fast neutron reactors[J]. Physics of Atomic Nuclei, 2020, 83(8): 1277-1284.
[3]   DU P, XIONG Q W, SHAN J Q, et al. Development and application of 3D pool-type sodium cooled fast reactor system analysis program[J]. Progress in Nuclear Energy, 2022, 144: 104027.
[4]   杨红义, 齐少璞, 杨军, 等. 池式钠冷快堆主热传输系统瞬态研究[J]. 中国科学: 技术科学, 2022, 52(10): 1521-1542. doi:10.1360/sst-2021-0052
YANG H Y, QI S P, YANG J, et al. Transient analysis of the main heat-transfer system of the pool-type sodium-cooled fast reactor[J]. Scientia Sinica (Technologica), 2022, 52(10): 1521-1542.
doi: 10.1360/sst-2021-0052
[5]   陈汝刚, 解忠良, 饶柱石, 等. 二回路系统钠泵流体动静压混合润滑轴承的润滑机制及动力学特性[J]. 润滑与密封, 2017, 42(8): 6-13.
CHEN R G, XIE Z L, RAO Z S, et al. Lubrication regime and dynamic characteristics of hydro-hybrid bearing of two-circuit main loop Na liquid pump system[J]. Lubrication Engineering, 2017, 42(8): 6-13.
[6]   XIE Z L, RAO Z S, TA N. Investigation on the lubrication regimes and dynamic characteristics of hydro-hybrid bearing of two-circuit main loop liquid sodium pump system[J]. Annals of Nuclear Energy, 2018, 115: 220-232.
[7]   XIE Z L, SHEN N W, ZHU W D, et al. Dynamic characteristics analysis of the hydro-hybrid liquid Sodium lubricated bearing-rotor coupled system in the two-circuit main loop liquid sodium pump system[J]. Annals of Nuclear Energy, 2020, 136: 107059.
[8]   张凌峰, 孙见君, 马晨波, 等. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
ZHANG L F, SUN J J, MA C B, et al. Analysis of hydrodynamic characteristics of guide hybrid-bearings for sodium-cooled fast reactor coolant pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(5): 427-434.
[9]   曹金龙. 钠机械泵液钠动静压轴承高温摩擦磨损分析及润滑研究[D]. 济南: 济南大学, 2020.
CAO J L. High-temperature friction and wear analysis and lubricating study of sodium mechanical pump liquid sodium hydrostatic bearings[D]. Jinan: University of Jinan, 2020.
[10]   高羡明, 蔡志祥, 张功学, 等. 核主泵液钠润滑导轴承特性分析及参数优化设计[J/OL]. 机械设计: 1-11(2023-10-16)[2024-04-30]. .
GAO X M, CAI Z X, ZHANG G X, et al. Characteristic analysis and parameter optimization design of liquid sodium bearing in the nuclear main pump[J/OL]. Journal of Machine Design: 1-11(2023-10-16) [2024-04-30]. .
[11]   张培耘, 张彦虎, 华希俊, 等. 微织构化表面润滑设计与发展分析[J]. 表面技术, 2021, 50(9): 14-32.
ZHANG P Y, ZHANG Y H, HUA X J, et al. Lubrication design and development analysis of micro-texturing surfaces[J]. Surface Technology, 2021, 50(9): 14-32.
[12]   胡利鸿, 莫继良, 王东伟, 等. 沟槽和圆坑织构抑制摩擦尖叫噪声研究[J]. 中国机械工程, 2016, 27(9): 1158-1164.
HU L H, MO J L, WANG D W, et al. Groove-textured and pit-textured surfaces to suppress friction-induced squeal noise[J]. China Mechanical Engineering, 2016, 27(9): 1158-1164.
[13]   张辉, 刘洋, 王伟, 等. 织构化表面设计及其摩擦学应用[J]. 机械工程学报, 2019, 55(17): 85-93. doi:10.3901/jme.2019.17.085
ZHANG H, LIU Y, WANG W, et al. Surface texture design and its tribological application[J]. Journal of Mechanical Engineering, 2019, 55(17): 85-93.
doi: 10.3901/jme.2019.17.085
[14]   ROSENKRANZ A, COSTA H L, BAYKARA M Z, et al. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear: a review[J]. Tribology International, 2021, 155: 106792.
[15]   CAI Y, LI K M, LI L, et al. Anti-friction mechanism of textured artificial joint material under the walking conditions of human[J]. Journal of Materials Research and Technology, 2022, 20: 2999-3007.
[16]   JI R J, ZHAO Q Y, ZHAO L L, et al. Study on high wear resistance surface texture of electrical discharge machining based on a new water-in-oil working fluid[J]. Tribology International, 2023, 180: 108218.
[17]   ZOU H B, LIN B, REN X Y, et al. Particle size effects on efficiency of surface texturing in reducing friction[J]. Tribology International, 2022, 176: 107895.
[18]   GALDA L, SEP J, OLSZEWSKI A, et al. Experimental investigation into surface texture effect on journal bearings performance[J]. Tribology International, 2019, 136: 372-384.
[19]   陈俊, 蒋鑫越, 林良程, 等. 熔盐堆高温熔盐泵液下轴承表面织构分析与优化[J]. 核技术, 2019, 42(5): 79-85.
CHEN J, JIANG X Y, LIN L C, et al. Optimization for surface texture on the shaft sleeve of a high temperature molten salt pump in molten salt reactor[J]. Nuclear Techniques, 2019, 42(5): 79-85.
[20]   CHEN C S, LI S, MA Z L, et al. Study on the influence of surface texture on the dynamic performance of sliding bearing[J]. Journal of Physics: Conference Series, 2021, 1820(1): 012108.
[21]   WANG L L, DUAN J D, HE M X, et al. Study on antifriction mechanism of surface textured elliptical bearings[J]. Journal of Tribology, 2023, 145(1): 011702.
[22]   VLĂDESCU S C, FOWELL M, MATTSSON L, et al. The effects of laser surface texture applied to internal combustion engine journal bearing shells: an experimental study[J]. Tribology International, 2019, 134: 317-327.
[23]   王子起, 李双喜, 刘益江, 等. 泵用机械密封织构端面干摩擦磨损仿真及试验研究[J]. 机电工程, 2024, 41(5): 797-806.
WANG Z Q, LI S X, LIU Y J, et al. Simulation and experimental study of dry frictional wear on the textured face of mechanical seals for pump[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(5): 797-806.
[24]   于如飞, 寇鑫, 陈渭. 基于CFD的新型表面织构仿真分析[J]. 工程设计学报, 2021, 28(4): 466-472.
YU R F, KOU X, CHEN W. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[25]   王延文. 激光织构40Cr钢油润滑摩擦磨损性能试验[J].应用激光, 2023, 43(12): 98-107.
WANG Y W. Experimental study on the friction and wear properties of laser textured 40Cr steel under oil lubrication[J]. Applied Laser, 2023, 43(12): 98-107.
[26]   裴世源, 牛红军, 洪军. 快堆钠泵动静压导轴承润滑特性分析[J]. 机械工程学报, 2020, 56(21): 29-37. doi:10.3901/jme.2020.21.029
PEI S Y, NIU H J, HONG J. Lubrication characteristics of hybrid bearing in sodium-cooled fast reactor[J]. Journal of Mechanical Engineering, 2020, 56(21): 29-37.
doi: 10.3901/jme.2020.21.029
[27]   孟晖. 表面织构对连续回转马达摩擦副摩擦性能影响的研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.
MENG H. Study on the effect of surface texture on friction performance of friction pair of continuous rotary motor[D]. Harbin: Harbin University of Science and Technology, 2023.
[28]   李金苗. 织构化往复摩擦副的润滑及摩擦学特性研[D]. 淮南: 安徽理工大学, 2022.
LI J M. Study on lubrication and tribological properties of textured reciprocating friction pairs[D]. Huainan: Anhui University of Science and Technology, 2022.
[1] HE Tao, CHEN Qiang-man, CHEN Guo-yu, WANG Chuan-li, HUANG Sen, SHEN Hao. Research on lubrication and bearing characteristics of variable texture on sliding friction pair surface[J]. Chinese Journal of Engineering Design, 2021, 28(5): 585-593.
[2] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[3] LIU Shu-qin, LIU Ruo-chen, SUN Jian-zhong, ZHANG Jin-wu. Research on on-line electrostatic monitoring method for wear state of wind turbine gearbox[J]. Chinese Journal of Engineering Design, 2021, 28(2): 163-169.
[4] DENG Xiao-fan, REN Cheng-zu, CHEN Yang, CHEN Guang, CAI Zhi-jie, HE Ying-lun. Research on material selection of lapping tools for double-disc and linear-groove lapping method based on friction and wear experiment[J]. Chinese Journal of Engineering Design, 2020, 27(6): 720-728.
[5] ZHANG Yi-cong, ZHU Wei, WU Yu-guo, SHI Li-ping. Numerical simulation of sealing performance of Reuleaux triangular micro-dimpled textured end face[J]. Chinese Journal of Engineering Design, 2020, 27(1): 103-110.