Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (5): 537-546    DOI: 10.3785/j.issn.1006-754X.2022.00.052
Design Theory and Method     
Research on IPPD method of automotive clutch
Zheng-feng YAN(),Lin-zi HOU,Zhen HAN,Xian-xu BAI()
School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
Download: HTML     PDF(5010KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Automobile clutch is an important starting element of automobile transmission system. The traditional design method does not integrate the performance requirements, product characteristics, process flow and process capabilities organically in the whole product development process, and does not consider the reasonable tolerance range of clutch product parameters and the size changes within the life cycle, so it is difficult to meet the requirements of clutch torque transmission capacity and pedal control characteristics in large-scale production. By establishing the IPPD (integrated product and process design) method of automobile clutch based on function-product characteristics-process-process capability, the influence of clutch product characteristics and process parameter tolerances on torque transmission capability and pedal control capability was analyzed, and the method of establishing accurate transmission system dynamics model was proposed. The mapping relationship between torque transmission capability, pedal control characteristics and product characteristics and process parameter tolerance was given; under the condition of meeting the design requirements of manufacturability and assemblability, a cycle mapping relationship of product characteristics and process flow and parameter changes was established, and a robust tolerance design method based on process capability was adopted to optimize the process scheme and process parameters. The proposed clutch IPPD method can better enable the product to meet the performance requirements, thus providing support for improving the design accuracy and reliability of the clutch, and establishing a foundation for the intelligent design of the clutch.



Key wordsclutch      multi-level      integrated product and process design      torque transfer      handling comfort     
Received: 28 July 2021      Published: 02 November 2022
CLC:  U 463.211  
Corresponding Authors: Xian-xu BAI     E-mail: zf.yan@hfut.edu.cn;bai@hfut.edu.cn
Cite this article:

Zheng-feng YAN,Lin-zi HOU,Zhen HAN,Xian-xu BAI. Research on IPPD method of automotive clutch. Chin J Eng Design, 2022, 29(5): 537-546.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.052     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I5/537


汽车离合器IPPD方法研究

汽车离合器是汽车传动系统的重要起步元件。其传统的设计方法没有在整个产品开发过程中将性能要求、产品特性、工艺过程及过程能力有机地融合,没有考虑离合器产品参数合理的公差范围以及生命周期内尺寸的变化,因此很难满足大规模生产的离合器转矩传递能力和踏板操纵特性的要求。通过建立基于功能—产品特性—工艺及过程能力的汽车离合器IPPD (integrated product and process design,集成产品工艺设计)方法,分析离合器产品特性及工艺参数公差对转矩传递能力和踏板操纵特性的影响,提出了建立精确的传动系统动力学模型的方法,给出了转矩传递能力和踏板操纵特性与产品特性及工艺参数公差的映射关系;在满足可制造性和可装配性的设计要求下,建立了产品特性与工艺过程及参数变化的循环映射关系,采用基于过程能力的稳健公差设计方法进行工艺方案和工艺参数优化。采用所提出的离合器IPPD方法可以更好地使产品满足性能要求,从而为提高离合器设计精度和可靠性提供支撑,为开展离合器的智能设计建立基础。


关键词: 离合器,  多层次,  集成产品工艺设计,  转矩传递,  操纵舒适性 
Fig.1 IPPD method of automobile clutch
Fig.2 IPPD flow chart of automobile clutch
Fig.3 Process of technical scheme determination, evaluation and selection
Fig.4 Typical automobile clutch and its operating mechanism
Fig.5 Working characteristic curve of typical automobile clutch cover assembly
Fig.6 Bonding diagram of power transmission systems of automobile and clutch
Fig.7 Diaphragm spring
Fig.8 Load and separation characteristic curve of diaphragm spring based on main dimensional tolerance change
Fig.9 Variation curve of friction coefficient of friction plate with the number of dutch cycle and temperature
Fig.10 Wave spring
Fig.11 Axial compression characteristics of wave spring
Fig.12 Product process matrix of automobile clutch
Fig.13 Mapping relationship between product characteristics and process parameters
Fig.14 Robust design simulation roadmap
Fig.15 Friction plate tester
Fig.16 Relation curve between friction coefficient of friction plate and temperature
Fig.17 Wave spring axial compression testing equipment
Fig.18 Relation curve between axial compression displacement and axial load of wave spring
Fig.19 Automobile clutch comprehensive performance testing equipment
Fig.20 Automobile clutch pedal control characteristic testing equipment
Fig.21 Automobile clutch torque curve
Fig.22 Automobile clutch pedal control characteristic curve
[1]   LI Liang, WANG Xiang-yu, QI Xiao-wei, et al. Automatic clutch control based on estimation of resistance torque for AMT[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2682-2693.
[2]   万里翔,刘雪莱,陈权瑞,等.离合器轴向非线性特性对离合器分离力—分离位移的影响研究[J].振动与冲击,2018,37(19):217-224. doi:10.13465/j.cnki.jvs.2018.19.033
WAN Li-xiang, LIU Xue-lai, CHEN Quan-rui, et al. Effects of a clutch's axial nonlinear characteristics on its release forces and displacements[J]. Journal of Vibration and Shock, 2018, 37(19): 217-224.
doi: 10.13465/j.cnki.jvs.2018.19.033
[3]   ANTONIO D G, LUIGI I, MARIO P, et al. A survey on modeling and engagement control for automotive dry clutch[J]. Mechatronics, 2018, 55: 63-75.
[4]   JOSˇKO D, VLADIMIR I, FRANCIS A, et al. Bond graph modeling of automotive transmissions and drivelines[J] IFAC Proc, 2012, 45(2): 427-432.
[5]   王涛,王青,李勇.基于键合图的电动汽车驱动系统建模与仿真[J].农业工程学报,2011,27(12):64-68. doi:10.3969/j.issn.1002-6819.2011.12.013
WANG Tao, WANG Qing, LI Yong. Modeling and simulation for powertrain of electric vehicle based on bond graph[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 64-68.
doi: 10.3969/j.issn.1002-6819.2011.12.013
[6]   USHER J M, ROY U, PARSAEI H. Integrated product and process development: methods, tools, and technologies[M]. New York: John Wiley & Sons, 1998: 198-221.
[7]   BEJGEROWSKI W, ANANTHANARAYANAN A, MUELLER D, et al. Integrated product and process design for a flapping wing drive mechanism[J]. Journal of Mechanical Design, 2009, 131(6): 061006.
[8]   AZAMATOV A, LEE J W, BYUN Y H. Comprehensive aircraft configuration design tool for integrated product and process development[J]. Advances in Engineering Software, 2011, 42(1/2): 35-49.
[9]   罗润.基于QFD-TRIZ-DOE的产品设计方法及其工程应用[J].科技与创新,2021(3):43-45. doi:10.15913/j.cnki.kjycx.2021.03.013
LUO Run. Product design method based on QFD, TRIZ and DOE and its engineering application[J]. Science and Technology and Innovation, 2021(3): 43-45.
doi: 10.15913/j.cnki.kjycx.2021.03.013
[10]   冯培恩,张帅,潘双夏,等.复合功能产品概念设计循环求解过程及其实现[J].机械工程学报,2005,41(3):135-141. doi:10.3321/j.issn:0577-6686.2005.03.025
FENG Pei-en, ZHANG Shuai, PAN Shuang-xia, et al. Cyclic solving process and realization for conceptual design of complex function product[J]. Journal of Mechanical Engineering, 2005, 41(3): 135-141.
doi: 10.3321/j.issn:0577-6686.2005.03.025
[11]   庞继红,张根保,周宏明,等.基于粗糙集的数控机床精度设计质量特性反向映射研究[J].机械工程学报,2012,48(5):101-107. doi:10.3901/jme.2012.05.101
PANG Ji-hong, ZHANG Gen-bao, ZHOU Hong-ming, et al. Study on reverse mapping of accuracy design quality characteristics for numerical control machine based on rough set[J]. Journal of Mechanical Engineering, 2012, 48(5): 101-107.
doi: 10.3901/jme.2012.05.101
[12]   张根保,金传喜,冉琰,等.基于FMA分解的关键质量特性映射变换技术[J].重庆大学学报,2019,42(3):1-14.
ZHANG Gen-bao, JIN Chuan-xi, RAN Yan, et al. Mapping technique of key quality characteristics based on FMA decomposition[J]. Journal of Chongqing University, 2019, 42(3): 1-14.
[13]   邓军,余忠华,吴昭同.产品质量与过程质量的映射研究[J].中国机械工程,2010,21(17):2070-2074.
DENG Jun, YU Zhong-hua, WU Zhao-tong. Research on mapping between product quality and process quality based on extension theory[J]. China Mechanical Engineering, 2010, 21(17): 2070-2074.
[14]   肖人彬,程贤福,陈诚,等.基于公理设计和设计关联矩阵的产品平台设计新方法[J].机械工程学报,2012,48(11):94-103. doi:10.3901/jme.2012.11.094
XIAO Ren-bin, CHENG Xian-fu, CHEN Cheng, et al. New approach to product platform design based on axiomatic design and design relationship matrix[J]. Journal of Mechanical Engineering, 2012, 48(11): 94-103.
doi: 10.3901/jme.2012.11.094
[15]   郑浩,冯毅雄,高一聪,等.基于性能演化的复杂产品概念设计求解过程研究[J].机械工程学报,2018,54(9):214-223. doi:10.3901/jme.2018.09.214
ZHENG Hao, FENG Yi-xiong, GAO Yi-cong, et al. The solving process of conceptual design for complex product based on performance evolution[J]. Journal of Mechanical Engineering, 2018, 54(9): 214-223.
doi: 10.3901/jme.2018.09.214
[16]   宋慧军,林志航.机械产品概念设计多层次混合映射功能求解框架[J].机械工程学报,2003,39(5):82-87. doi:10.3321/j.issn:0577-6686.2003.05.016
SONG Hui-jun, LIN Zhi-hang. Hierarchical function solving framwork with hybrid mappings in the conceptual design of mechanical products[J]. Journal of Mechanical Engineering, 2003, 39(5): 82-87.
doi: 10.3321/j.issn:0577-6686.2003.05.016
[1] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chin J Eng Design, 2022, 29(4): 484-492.
[2] ZHANG Ze, CHEN Yong, LI Guang-xin, LEI Yong-gan, RUAN Ou, WANG Zai-zhou. Design and structure optimization of electro-hydraulic control system assembly of electric vehicle transmission[J]. Chin J Eng Design, 2021, 28(3): 335-343.
[3] QIN Yong-feng, GONG Guo-fang, WANG Fei, SUN Chen-chen. Displacement controller design for piston of hydro-viscous clutch based on RBF neural network[J]. Chin J Eng Design, 2019, 26(5): 603-610.
[4] DU Xiao-jiao, XIONG Yan, LIU Long-fan, SHI Qian. Patent knowledge representation and organization based on multi-attribute[J]. Chin J Eng Design, 2017, 24(1): 1-7.
[5] HU Jun-kai, WANG Feng, TAN Yang-hong, SUN Qiu-qin, WANG Rui, HE Rong-tao. Preventive reconfiguration strategy of distribution network with energy storage[J]. Chin J Eng Design, 2017, 24(1): 50-56.
[6] ZHOU Jin-chao, LIU Zi-jian, PI Hao-jie, LIU Zi-yun. Research on shift strategy of AMT vehicle based on engine torque and speed control[J]. Chin J Eng Design, 2015, 22(2): 185-192.
[7] WAN Xiao-Feng, LEI Ji-Tang, YI Qi-Jun, JIA Jin-Xue, ZHANG Yan-Fei, DING Mao. Clutch engaging control of AMT for starting based on speed feedback[J]. Chin J Eng Design, 2013, 20(5): 441-445.
[8] CHEN Dian-Hua, SHANG Gui-Zhi, LI Yu-Guang. Performance analysis of surpassing clutch with roll bodies type based on finite element method[J]. Chin J Eng Design, 2007, 14(6): 464-467.
[9] BAO Rui-Feng, HUANG Hong-Zhong, XUE Li-Hua. Study on multi-level fuzzy synthetic evaluation model for mechanical kinematical scheme based on neural network[J]. Chin J Eng Design, 2006, 13(2): 65-69.
[10] SONG Wei-Gang, ZHAN Xin, WANG Yuan-Yuan. Research on comparison of drives in long belt conveyor[J]. Chin J Eng Design, 2004, 11(6): 301-311.
[11] LIU Guo-Guang, ZHOU Jian-Ping. Improved ant colony algorithm for optim ization design of pull-type clutch diaphragm spring[J]. Chin J Eng Design, 2004, 11(6): 334-337.
[12] ZENG Ji-Jie, ZHAO Wen. Advanced development for facility torsion fatigue tester[J]. Chin J Eng Design, 2004, 11(1): 16-18.
[13] ZHANG Feng-Nian, GU Jian-Su, ZHANG Shan-Xing. Method of Monte Carlo (M-C) used in production of
diaphragm-spring and dishing-spring
[J]. Chin J Eng Design, 2003, 10(2): 108-110.