Design Theory and Method |
|
|
|
|
Key meta-action identification for mechanical product with multi-criteria fuzzy association |
Xue-ping LI( ),Yan RAN( ) |
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China |
|
|
Abstract As the core of complex mechanical product, key parts play an important role in realizing product functions. However, it is very difficult to identify key parts because of the large number of parts and their coupling relationship. In order to realize the identification of key units of product, a method of key meta-action identification for complex mechanical product based on multi-criteria fuzzy association comprehensive evaluation was proposed from the perspective of meta-action. Firstly, the complex mechanical product was decomposed into the smallest motion unit?meta-action, by using the decomposition method of fuction-montion-action (FMA); secondly, a triangular fuzzy evaluation matrix was established based on the motion and structure relationship between different meta-actions. Combining evidence theory and fuzzy relationship, a fuzzy evidence theory algorithm was proposed to achieve the fusion of different associated information between meta-actions, solve the problem of information ambiguity or missing between meta-actions. On this basis, the ranking of the importance of meta-actions was realized by using the method of determining the index weight of the possible degree relationship of triangular fuzzy numbers; finally, taking the turntable of a domestic NC (numerical control) machining center as an example, the rationality and effectiveness of the method were verified. The research showed that FMA decomposition method could simplify the decomposition process of the whole machine from the perspective of motion, and effectively characterize the motion relationship of product parts; the coupling between meta-actions could be better studied by analyzing the association between meta-actions from the structure and motion relationship of meta-actions; the problem of information fuzziness could be solved by introducing evidence theory into fuzzy relations to fuse the related information between different meta-actions. By sorting the importance of meta-actions, key meta-actions were identified, which laid a foundation for the subsequent research on meta-action units.
|
Received: 27 October 2021
Published: 02 November 2022
|
|
Corresponding Authors:
Yan RAN
E-mail: 2322785410@qq.com;ranyan@cqu.edu.cn
|
多准则模糊关联的机械产品关键元动作识别
关键零件作为复杂机械产品的核心,对实现产品功能具有重要作用。然而,产品中零件数目庞大且具有耦合关系,导致识别关键零件十分困难。为实现产品关键单元的识别,从元动作出发,提出了一种面向复杂机械产品的多准则模糊关联综合评价的关键元动作识别方法。首先,利用“功能—运动—动作(fuction?montion?action, FMA)”的分解方法将复杂机械产品分解至最小运动单元——元动作;其次,基于不同元动作之间的运动和结构关系建立三角模糊评价矩阵,将证据理论与模糊关系结合,提出了模糊证据理论算法,实现了元动作之间不同关联信息的融合,解决了元动作之间信息模糊或缺失的问题,并在此基础上利用三角模糊数可能度关系的指标权重确定方法实现对元动作重要度的排序;最后,以国产某型号数控加工中心的转台为例,验证了该方法的合理性与有效性。研究表明:FMA分解方法从运动角度出发,可以简化整机的分解过程,有效表征产品零件的运动关系;从元动作的结构和运动关系分析元动作之间的相关性可以更好地研究元动作之间的耦合性;将证据理论带入模糊关系中进行不同元动作之间的关联信息融合,可以解决信息模糊问题。通过对元动作重要度的排序识别关键元动作,为后续对元动作单元的研究奠定了基础。
关键词:
机械产品,
关键元动作,
模糊关联,
信息融合,
三角模糊数
|
|
[1] |
周宏根,景旭文,高安丽.柴油机关键零件工艺规划支持系统研究[J].组合机床与自动化加工技术,2009(6):84-87. doi:10.3969/j.issn.1001-2265.2009.06.024 ZHOU Hong-gen, JING Xu-wen, GAO An-li. The research on process planning and supporting system of the diesel engine critical parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2009(6): 84-87.
doi: 10.3969/j.issn.1001-2265.2009.06.024
|
|
|
[2] |
宫中伟,莫蓉,杨海成,等.基于产品开发网络Hub节点的工程变更[J].计算机集成制造系统,2012, 18(1):40-46. doi:10.4028/www.scientific.net/amr.314-316.1607 GONG Zhong-wei, MO Rong, YANG Hai-cheng, et al. Engineering change based on Hub nodes of product development network[J]. Computer Integrated Manufacturing Systems, 2012, 18(1): 40-46.
doi: 10.4028/www.scientific.net/amr.314-316.1607
|
|
|
[3] |
郏维强,刘振宇,刘达新,等.基于模糊关联的复杂产品模块化设计方法及其应用[J].机械工程学报, 2015,51(5):130-142. doi:10.3901/jme.2015.05.130 JIA Wei-qiang, LIU Zhen-yu, LIU Da-xin, et al. Modular design method and application for complex product based on fuzzy correlation analysis[J]. Journal of Mechanical Engineering, 2015, 51(5): 130-142.
doi: 10.3901/jme.2015.05.130
|
|
|
[4] |
郝丽,莫蓉,魏斌斌,等.粗糙集理论在关键功能零件识别中的应用[J].哈尔滨工业大学学报,2021,53(2):61-70. doi:10.11918/202001068 HAO Li, MO Rong, WEI Bin-bin, et al. Application of rough set theory in identification of key functional parts[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 61-70.
doi: 10.11918/202001068
|
|
|
[5] |
BELHADJ I, TRIGUI M, BENAMARA A. Sub-assembly generation algorithm from a CAD model[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 2829-2840. doi:10.1007/s00170-016-8637-x
doi: 10.1007/s00170-016-8637-x
|
|
|
[6] |
HAN Zhou-pei, MO Rong, CHANG Zhi-yong, et al. Key assembly structure identification in complex mechanical assembly based on multi-source information[J]. Assembly Automation, 2017, 37(2): 208-218. doi:10.1108/aa-09-2016-121
doi: 10.1108/aa-09-2016-121
|
|
|
[7] |
袁博.基于复杂网络的装配过程关键零件识别和故障传播评价[D].武汉:武汉理工大学,2020:42-50. doi:10.29252/jafm.13.03.30747 YUAN Bo. Identification of key parts and evaluation of fault propagation[D]. Wuhan: Wuhan University, 2020: 42-50.
doi: 10.29252/jafm.13.03.30747
|
|
|
[8] |
李冬英,李梦奇,张根保,等.元动作装配单元误差源及误差传递模型研究[J].机械工程学报,2015, 51(17):146-155. doi:10.3901/jme.2015.17.146 LI Dong-ying, LI Meng-qi, ZHANG Gen-bao, et al. Mechanism analysis of deviation sourcing and propagation for meta-action assembly unit[J]. Journal of Mechanical Engineering, 2015, 51(17): 146-155.
doi: 10.3901/jme.2015.17.146
|
|
|
[9] |
YU Hui, ZHANG Gen-bao, RAN Yan, et al. A reliability allocation method for mechanical product based on meta-action[J]. IEEE Transactions on Reliability, 2020, 69(1): 373-381. doi:10.1109/tr.2019.2907517
doi: 10.1109/tr.2019.2907517
|
|
|
[10] |
柯磊.数控机床基于元动作的故障溯源与分析技术研究[D].重庆:重庆大学,2019:19-27. KE Lei. Research on fault trace and analysis technology of NC machine tool based on meta action[D]. Chong-qing: Chongqing University, 2019: 19-27.
|
|
|
[11] |
CHEN Yi-fan, ZHANG Gen-bao, RAN Yan. Risk analysis of coupling fault propagation based on meta-action for computerized numerical control (CNC) machine tool[J]. Complexity, 2019(8): 1-11. doi:10.1155/2019/3237254
doi: 10.1155/2019/3237254
|
|
|
[12] |
RAN Yan, ZHANG Gen-bao, ZHANG Lian. Quality characteristic association analysis of computer numerical control machine tool based on meta-action assembly uni[J] Advances in Mechanical Engineering, 2016, 8(1): 1-10. doi:10.1177/1687814016629344
doi: 10.1177/1687814016629344
|
|
|
[13] |
LI Dong-ying, ZHANG Gen-bao, LI Meng-qi, et al. Assembly reliability modeling technology based on meta-action[J]. Procedia CIRP, 2015, 27: 207-215. doi:10.1016/j.procir.2015.04.068
doi: 10.1016/j.procir.2015.04.068
|
|
|
[14] |
李宇龙,张根保,王勇勤,等.数控机床基于元动作的FMEA分析技术研究[J].湖南大学学报(自然科学版),2019,46(10):64-75. LI Yu-long, ZHANG Gen-bao, WANG Yong-qin, et al. Research on FMEA analysis technology based on meta-action for numerical control machine tool[J]. Journal of Hunan University (Natural Sciences), 2019, 46(10): 64-75.
|
|
|
[15] |
WANG Xin, LUO Bo, SERGIO O. Application of service modular design based on a fuzzy design structure matrix: A case study from the mining industry[J]. Mathematical Problems in Engineering, 2021: 1-19. doi:10.1155/2021/5067092
doi: 10.1155/2021/5067092
|
|
|
[16] |
FANG Ming, LIU Hong-wei. A Research on the Reliability allocation of complex equipment based on improved fuzzy analytic hierarchy process[C]//2013 International Conference on Industrial Engineering and Management Science (ICIEMS 2013), Shanghai, China, 2013-09-28.
|
|
|
[17] |
黄智力,罗键.三角模糊数型不确定多指标决策的可能度关系法[J].控制与决策,2015,30(8): 1365-1371. HUANG Zhi-li, LUO Jian. Possibility degree relation method for triangular fuzzy number-based uncertain multi-attribute decision making[J]. Control and Decision, 2015, 30(8): 1365-1371.
|
|
|
[18] |
陈一凡,张根保,冉琰,等.面向元动作的机械传动系统可靠性分配方法[J].中国机械工程,2021,32(17):2032-2039. doi:10.3969/j.issn.1004-132X.2021.17.003 CHEN Yi-fan, ZHANG Gen-bao, RAN Yan, et al. Meta-action-oriented reliability allocation method of mechanical transmission systems[J]. China Mechanical Engineering, 2021, 32(17): 2032-2039.
doi: 10.3969/j.issn.1004-132X.2021.17.003
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|