Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (1): 1-7    DOI: 10.3785/j.issn.1006-754X.2017.01.001
Design Theory and Methodology     
Patent knowledge representation and organization based on multi-attribute
DU Xiao-jiao, XIONG Yan, LIU Long-fan, SHI Qian
School of Manufacturing Science & Engineering, Sichuan University, Chengdu 610065, China
Download: HTML     PDF(2235KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the technology limitation existing in traditional patent acquisitions, six types of innovative attributes were used to construct a multi-attribute representation model for patent knowledge:contradiction, substance-field, function, inventive principle, inventive standard and effect. In addition, each innovative attribute could be described by the corresponding attribute-hierarchy tree, thus the specific organization strategy as well as the algorithm process were presented to organize patents from different levels of abstraction. Furthermore, an application framework based on the above model was put forward. As a result, a local patent database was constructed based on multi-attribute and multi-level, which could support the comprehensive expression from different attribute views and the effective obtaining in different levels for patent knowledge. In conclusion, it was conducive to break the limitation of technological field and promote the efficient obtaining of cross-disciplinary and cross-field patent knowledge, which could help designers get inspiration in the process of analogical transferring. Finally, the case of nanometer-sized hollow nickel spheres was used to demonstrate the practicability of the model.



Key wordspatent knowledge      multi-attribute      multi-level      attribute label      cross-disciplinary     
Received: 07 June 2016      Published: 28 February 2017
CLC:  TH122  
  TP391  
Cite this article:

DU Xiao-jiao, XIONG Yan, LIU Long-fan, SHI Qian. Patent knowledge representation and organization based on multi-attribute. Chinese Journal of Engineering Design, 2017, 24(1): 1-7.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.01.001     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I1/1


基于多属性的专利知识表征与组织

针对专利知识传统获取方式中存在的技术领域局限,利用矛盾、物质-场、功能、发明原理、标准解和效应等6种创新属性构建专利知识多属性表征模型;每种创新属性均采用对应的属性层次树进行多层次描述,并由此提出了基于多属性的专利知识多层次组织策略及算法流程;在此基础上,给出了基于该模型的应用框架.通过上述方法构建得到基于多属性多层次的本地专利库,从多个属性角度对专利知识进行综合表征,并支撑不同层次专利知识的获取.从而,打破了技术领域的局限,促进跨学科、跨领域专利知识的快速、有效获取,有利于激发设计人员进行类比迁移.最后,通过微纳空心镍球制备方法的改进示例说明该模型的可行性.


关键词: 专利知识,  多属性,  多层次,  属性标签,  跨领域 
[[1]]   郭婕婷,肖国华. 专利分析方法研究[J]. 情报杂志,2008,27(1):12-14. GUO Jie-ting, XIAO Guo-hua. Patent analysis method research[J]. Journal of Intelligence Magazine, 2008, 27(1):12-14.
[[2]]   RUSSO D. Function-based patent search:achievements and open problems[J]. International Journal of Product Development, 2014, 19(1/3):39-63.
[[3]]   梁艳红,檀润华,马建红. 面向产品创新设计的专利文本分类研究[J]. 计算机集成制造系统,2013,19(2):382-390. LIANG Yan-hong, TAN Run-hua, MA Jian-hong. Study on patent text classification for product innovative design[J]. Computer Integrated Manufacturing Systems, 2013, 19(2):382-390.
[[4]]   HE C, HAN T L. Pattern-oriented associative rule-based patent classification[J]. Expert Systems with Applications, 2010, 37(3):2395-2404.
[[5]]   PARK H, REE J J, KIM K. Identification of promising patents for technology transfers using TRIZ evolution trends[J]. Expert Systems with Applications, 2013, 40(2):736-743.
[[6]]   YU Hui-ling, FAN De-lin. Man-made boards technology trends based on TRIZ evolution theory[J]. Physics Procedia, 2012, 3(6):221-227.
[[7]]   ZHENG Li, ATHERTON Mark, HARRISON David. Identifying patent conflicts:TRIZ-Led patent mapping[J]. World Patent Information, 2014, 39(4):11-23.
[[8]]   CASCINI G, RISSONE P, ROTINI F. From design optimization systems to geometrical contradictions[J]. Procedia Engineering, 2011, 9:473-483.
[[9]]   龚健文,李彦,李文强. 支持产品创新的专利知识库系统构建及应用[J]. 工程设计学报,2013, 20(4):265-270. GONG Jian-wen, LI Yan, LI Wen-qiang. Construction and application of the patent knowledge system for supporting product innovation[J]. Chinese Journal of Engineering Design, 2013, 20(4):265-270.
[[10]]   张惠,郑雄胜,刘娟意,等. 绿色专利设计知识的获取方法研究[J]. 工程设计学报,2015,22(1):11-17. ZHANG Hui, ZHENG Xiong-sheng, LIU Juan-yi, et al. Research of a method for acquiring design knowledge from green patents[J]. Chinese Journal of Engineering Design, 2015,22(1):11-17.
[[11]]   穆秀秀,郭德斌,刘伟,等. 基于核心专利群的专利规避范围界定方法研究[J]. 工程设计学报,2015,22(2):115-122. MU Xiu-xiu, GUO De-bin, LIU Wei, et al. The method of defining the scope of patent design around based on the group of core patents[J]. Chinese Journal of Engineering Design, 2015,22(2):115-122.
[[12]]   冀瑜,邱清盈,冯培恩,等. 国际专利分类表中设计知识的提取和利用[J]. 浙江大学学报(工学版),2016,50(3):412-418. JI Yu, QIU Qing-ying, FENG Pei-en, et al. Extraction and utilization of design knowledge in international patent classification[J]. Journal of Zhejiang University (Engineering Science), 2016,50(3):412-418.
[[13]]   刘龙繁,李彦,马金龙,等. 基于知识粒度的TRIZ在创新设计中的应用[J]. 机械工程学报,2016,52(5):22-32. LIU Long-fan, LI Yan, MA Jin-long, et al. Application of TRIZ in creative design based on knowledge granularity[J]. Journal of Mechanical Engineering, 2016, 52(5):22-32.
[[14]]   王国胤. 云模型与粒计算[M]. 北京:科学出版社,2012:137-140. WANG Guo-yin. Cloud model and granular computing[M]. Beijing:Science Press, 2012:137-140.
[[15]]   AONO Masaki. Attribute mapping:concept and implementation[J]. Computers & Graphics, 1990, 14(3/4):465-475.
[[16]]   李彦. 创新设计方法[M]. 北京:科学出版社, 2013:100-113. LI Yan. Method to creative design[M]. Beijing:Science Press, 2013:100-113.
[[17]]   王磊,李天瑞. 一种基于矩阵的知识粒度计算方法[J]. 模式识别与人工智能,2013,25(5):447-453. WANG Lei, LI Tian-rui. A matrix-based approach for calculation of knowledge granulation[J]. Pattern Recognition and Artificial Intelligence, 2013, 25(5):447-453.
[[18]]   徐伟华,米据生,吴伟志. 基于包含度的粒计算方法与应用[M].北京:科学出版社, 2015:21-34. XU Wei-hua, MI Ju-sheng, WU Wei-zhi. Granular computing methods and applications based on inclusion degree[M]. Beijing:Science Press, 2015:21-34.
[[19]]   LU Y. Concept hierarchy in data mining:specification, generation and implementation[D]. British Columbia:Simon Fraser University, School of Computing Science, 1997:33-59.
[[20]]   贾久胜,孙大吉,梁汝明. 合金连铸结晶区超声波搅拌装置:201510283956.1[P]. 2016-08-12. JIA Jiu-sheng, SUN Da-ji, LIANG Ru-ming. Ultrasonic-based stirring equipment for alloy continuous casting and crystallization:201510283956.1[P]. 2016-08-12.
[1] Zheng-feng YAN,Lin-zi HOU,Zhen HAN,Xian-xu BAI. Research on IPPD method of automotive clutch[J]. Chinese Journal of Engineering Design, 2022, 29(5): 537-546.
[2] HU Jun-kai, WANG Feng, TAN Yang-hong, SUN Qiu-qin, WANG Rui, HE Rong-tao. Preventive reconfiguration strategy of distribution network with energy storage[J]. Chinese Journal of Engineering Design, 2017, 24(1): 50-56.
[3] ZHANG Hui, ZHENG Xiong-sheng, LIU Juan-yi, XIE Ying-xiao. Research of a method for acquiring design knowledge from green patents[J]. Chinese Journal of Engineering Design, 2015, 22(1): 11-17.
[4] HE Man-Hui, LU Lin. Evaluation of selecting logistics provider based on entropy and MADM[J]. Chinese Journal of Engineering Design, 2013, 20(1): 6-10.
[5] BAO Rui-Feng, HUANG Hong-Zhong, XUE Li-Hua. Study on multi-level fuzzy synthetic evaluation model for mechanical kinematical scheme based on neural network[J]. Chinese Journal of Engineering Design, 2006, 13(2): 65-69.