Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (4): 456-464    DOI: 10.3785/j.issn.1006-754X.2022.00.060
Modeling, Simulation, Analysis and Decision     
Study on influencing factors of dynamic characteristics of annular recess hydrostatic thrust bearing
Zhu-xin TIAN1,2(),Ming-hui GUO2,Hai-yin CAO2
1.School of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China
2.School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML     PDF(3921KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic characteristics of hydrostatic thrust bearing directly determine the stability of its operating state, and the recess structure and throttling pattern are important factors affecting its dynamic characteristics. Therefore, based on the small perturbation method, the Reynolds equation of annular recess hydrostatic thrust bearing was decomposed into dynamic equation and static equation, and then the analytical expressions of its oil film stiffness and damping coefficient under the throttling patterns of orifice and capillary were obtained. At the same time, the correctness of theoretical calculation results was verified by oil film stiffness measurement experiment, which showed that the relative error was less than 15%. The theoretical calculation results showed that: for the hydrostatic thrust bearing, the annular recess was better than the circular recess, and the orifice throttling was better than the capillary throttling. By analyzing the influence of the area and position of recess on the oil film stiffness and damping coefficient of annular recess hydrostatic thrust bearing with orifice throttling, it was found that when the internal and external diameters and other basic structural parameters were determined, the dynamic characteristic coefficients of this bearing could be effectively optimized by adjusting the area and position of recess. The research results were conducive to the structural optimization design of hydrostatic thrust bearings with dynamic characteristics as target.



Key wordshydrostatic thrust bearing      annular recess      dynamic characteristics      small perturbation method     
Received: 29 November 2021      Published: 05 September 2022
CLC:  TH 117  
Cite this article:

Zhu-xin TIAN,Ming-hui GUO,Hai-yin CAO. Study on influencing factors of dynamic characteristics of annular recess hydrostatic thrust bearing. Chin J Eng Design, 2022, 29(4): 456-464.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.060     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I4/456


环形油腔液体静压推力轴承动态特性的影响因素研究

液体静压推力轴承的动态特性直接决定了其运行状态的稳定性,而油腔结构和节流方式是影响其动态特性的重要因素。为此,基于小扰动法将环形油腔液体静压推力轴承的Reynolds方程分解成动态方程和静态方程,分别求解得到小孔和毛细管节流方式下其油膜刚度和阻尼系数的解析表达式。同时,通过开展油膜刚度测量实验来验证理论计算结果的正确性,两者之间的相对误差小于15%。理论计算结果显示:对于液体静压推力轴承,环形油腔优于圆形油腔,小孔节流优于毛细管节流。通过分析油腔面积和油腔位置对小孔节流环形油腔液体静压推力轴承油膜刚度和阻尼系数的影响规律发现,当内、外径等基本结构参数确定时,调整油腔的面积和位置可以有效优化该轴承的动态特性系数。研究结果有助于以动态特性为目标的液体静压推力轴承的结构优化设计。


关键词: 液体静压推力轴承,  环形油腔,  动态特性,  小扰动法 
Fig.1 Structure diagram of annular recess hydrostatic thrust bearing
Fig.2 Experimental platform of annular recess hydrostatic thrust bearing
Fig.3 Physical object of annular recess hydrostatic thrust bearing with orifice throttling
参数数值
轴承外径R180
轴承内径r2109
油腔外径r4150
油腔内径r3130
Table 1 Geometric parameters of annular recess hydrostatic thrust bearing with orifice throttling
Fig.4 Distribution diagram of pressure sensors
Fig.5 Installation diagram of displacement sensors
Fig.6 Physical object of weighing sensor
Fig.7 Comparison of oil film stiffness of annular recess hydrostatic thrust bearing with orifice throttling
Fig.8 Comparison of dynamic characteristics of circular recess and annular recess hydrostatic thrust bearing under orifice throttling
Fig.9 Comparison of dynamic characteristics of circular recess and annular recess hydrostatic thrust bearing under capillary throttling
Fig.10 Effect of recess area on dynamic characteristics of annular recess hydrostatic thrust bearing with orifice throttling
Fig.11 Effect of recess position on dynamic characteristics of annular recess hydrostatic thrust bearing with orifice throttling
[1]   刘小军,陶邵佳,张亚宾,等.核主泵轴承重载惰转停机承载性能研究[J].流体机械,2019,47(10):51-54,88. doi:10.3969/j.issn.1005-0329.2019.10.010
LIU Xiao-jun, TAO Shao-jia, ZHANG Ya-bin, et al. Study on bearing performance of nuclear main pump bearing upon stop of heavy-duty idler [J]. Fluid Machinery, 2019, 47(10): 51-54, 88.
doi: 10.3969/j.issn.1005-0329.2019.10.010
[2]   冯伟,李美威,贺石中,等.大型水轮机组推力轴承油膜厚度在线监测研究[J].工程设计学报,2019,26(6):652-657. doi:10.3785/j.issn.1006-754X.2019.00.010
FENG Wei, LI Mei-wei, HE Shi-zhong, et al. Research on oil film thickness online monitoring for thrust bearing of large hydraulic generating units[J]. Chinese Journal of Engineering Design, 2019, 26(6): 652-657.
doi: 10.3785/j.issn.1006-754X.2019.00.010
[3]   陈磊,吴文凯,蒋春梅,等.精密离心机液体静压轴承设计[J].机械设计与研究,2014,30(6):34-36. doi:10.13952/j.cnki.jofmdr.2014.0181
CHEN Lei, WU Wen-kai, JIANG Chun-mei, et al. Design of the hydrostatic bearing for a precision centrifuge[J]. Machine Design and Research, 2014, 30(6): 34-36.
doi: 10.13952/j.cnki.jofmdr.2014.0181
[4]   HUANG Yu, TIAN Zhu-xin. A new derivation to study the steady performance of hydrostatic thrust bearing: Rabinowitch fluid model[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 246: 31-35. doi:10.1016/j.jnnfm.2017.04.012
doi: 10.1016/j.jnnfm.2017.04.012
[5]   王禹,王连吉,王续跃.液体静压推力轴承设计与Fluent仿真分析[J].机械设计与制造,2017(9):220-224. doi:10.3969/j.issn.1001-3997.2017.09.058
WANG Yu, WANG Lian-ji, WANG Xu-yue. Design of hydrostatic thrust bearing and simulation analysis by Fluent[J]. Machinery Design & Manufacture, 2017(9): 220-224.
doi: 10.3969/j.issn.1001-3997.2017.09.058
[6]   DOWSON D. Inertia effects in hydrostatic thrust bearings[J]. Journal of Fluids Engineering, 1961, 83(2): 227-234. doi:10.1115/1.3658931
doi: 10.1115/1.3658931
[7]   COOMBS J A, DOWSON D. An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing[J]. Proceedings of the Institution of Mechanical Engineers Conference Proceedings, 1964, 179(1964): 96-114. doi:10.1243/pime_conf_1964_179_270_02
doi: 10.1243/pime_conf_1964_179_270_02
[8]   TIAN Zhu-xin, CAO Hai-yin, HUANG Yu. Static characteristics of hydrostatic thrust bearing considering the inertia effect on the region of supply hole[J]. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 2019, 233(1): 188-193. doi:10.1177/1350650118773944
doi: 10.1177/1350650118773944
[9]   张艳芹,权振,冯雅楠,等.双矩形腔静压推力轴承内部流场动态分析[J].机械传动,2018,42(12):109-113.
ZHANG Yan-qin, QUAN Zhen, FENG Ya-nan, et al. Dynamic analysis of internal flow field of double-rectangular cavity hydrostatic thrust bearing[J]. Journal of Mechanical Transmission, 2018, 42(12): 109-113.
[10]   张艳芹,张志全,冯雅楠,等.双矩形腔静压滑动轴承高速时的油膜润滑特性[J].摩擦学学报,2018,38(5):609-618. doi:10.16078/j.tribology.2018.05.015
ZHANG Yan-qin, ZHANG Zhi-quan, FENG Ya-nan, et al. Lubrication characteristics of double rectangular cavity hydrostatic bearing at high speed[J]. Tribology, 2018, 38(5): 609-618.
doi: 10.16078/j.tribology.2018.05.015
[11]   于晓东,袁腾飞,李代阁,等.极端工况双矩形腔静压推力轴承动态特性[J].力学学报,2018,50(4):899-907. doi:10.6052/0459-1879-18-041
YU Xiao-dong, YUAN Teng-fei, LI Dai-ge, et al. Dynamic characteristics of hydrostatic thrust bearing with double rectangular cavity under extreme working conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 899-907.
doi: 10.6052/0459-1879-18-041
[12]   CHOW C Y. A non-central feeding hydrostatic thrust bearing[J]. Journal of Fluid Mechanics, 2006, 72(1): 113-120. doi:10.1017/S0022112075002972
doi: 10.1017/S0022112075002972
[13]   BAKKER O J, OSTAYEN R. Recess depth optimization for rotating, annular, and circular recess hydrostatic thrust bearings[J]. ASME Journal of Tribology, 2010, 132(1): 011103. doi:10.1115/1.4000545
doi: 10.1115/1.4000545
[14]   SINGH U P, GUPTA R S, KAPUR V K. On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing[J]. Tribology International, 2013, 58: 65-70. doi:10.1016/j.triboint.2012.09.014
doi: 10.1016/j.triboint.2012.09.014
[15]   SINGH U P, SINHA P, KUMAR M. Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region[J]. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 2020, 235(2): 386-395. doi:10.1177/1350650120945887
doi: 10.1177/1350650120945887
[16]   王少力,熊万里,孟曙光,等.恒流供油扇形静压推力轴承承载力解析计算与实验研究[J].机械强度,2015,37(5):828-833. doi:10.16579/j.issn.1001.9669.2015.05.018
WANG Shao-li, XIONG Wan-li, MENG Shu-guang, et al. Analytical calculation and experimental research on the bearing capacity of fan-shaped hydrostatic thrust bearing supplied with constant oil flow[J]. Journal of Mechanical Strength, 2015, 37(5): 828-833.
doi: 10.16579/j.issn.1001.9669.2015.05.018
[17]   张艳芹,邵俊鹏,韩桂华,等.大尺寸扇形静压推力轴承润滑性能的数值分析[J].机床与液压,2009,37(1):69-71. doi:10.3969/j.issn.1001-3881.2009.01.023
ZHANG Yan-qin, SHAO Jun-peng, HAN Gui-hua, et al. Numerical analysis of lubricating characteristic of large size sector hydrostatic thrust bearing[J]. Machine Tool & Hydraulics, 2009, 37(1): 69-71.
doi: 10.3969/j.issn.1001-3881.2009.01.023
[18]   于晓东,邱志新,李欢欢,等.扇形腔多油垫静压推力轴承润滑性能速度特性[J].热能动力工程,2013,28(3):296-300,328.
YU Xiao-dong, QIU Zhi-xin, LI Huan-huan, et al. Lubrication performance and velocity characteristics of a multi-oil-pad hydrostatic thrust bearing with a sector-shaped cavity[J]. Journal of Engineering for Thermal Energy and Power, 2013, 28(3): 296-300, 328.
[19]   SHEN F, CHEN C L, LIU Z M. Effect of pocket geometry on the performance of a circular thrust pad hydrostatic bearing in machine tools[J]. Tribology Transactions, 2014, 57(4): 700-714. doi:10.1080/10402004.2014.906694
doi: 10.1080/10402004.2014.906694
[1] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chin J Eng Design, 2023, 30(1): 82-92.
[2] Long-long ZHANG,Zheng-ming XIAO,Jiang LIU,Wei-biao LIU. Dynamic characteristics analysis of counter-rotating cylindrical roller bearing[J]. Chin J Eng Design, 2023, 30(1): 93-101.
[3] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chin J Eng Design, 2022, 29(4): 438-445.
[4] ZHANG Chao, HAN Xiao-ming, LI Qiang, LI Chi. Design and dynamic characteristics analysis of permanent magnet eddy current shock absorber under impact load[J]. Chin J Eng Design, 2020, 27(6): 786-794.
[5] LUO Ru-nan, NIU Wen-tie, WANG Chen-sheng. Analysis of influencing factors of dynamic error of feed system based on electromechanical-rigid-flexible coupling characteristics[J]. Chin J Eng Design, 2019, 26(5): 561-569.
[6] ZHANG Yu, CAI Xin, GAO Qiang, DING Wen-xiang. Research summary of wind turbine tower structure[J]. Chin J Eng Design, 2016, 23(2): 108-115,123.
[7] RUAN Xiao-Fang, QIU Min-Xiu, KONG Xiao-Wu. The improvement for dynamic characteristics of val ve control system with long pipeline due to accum ulator[J]. Chin J Eng Design, 2002, 9(2): 97-100.
[8] LV Fu-Zai , XIANG Zhan-Qin, CHENG Yao-Dong. The General Experimental Investigation of Giant Magnetostrictive Mini Actuator[J]. Chin J Eng Design, 2000, 7(2): 42-44.