Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (4): 438-445    DOI: 10.3785/j.issn.1006-754X.2022.00.055
Modeling, Simulation, Analysis and Decision     
Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method
Ze-jun WEN(),Xiang-heng MENG(),Zhao XIAO,Fan ZHANG
School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Download: HTML     PDF(1101KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of lower computational efficiency in the sensitivity analysis of aerodynamic characteristics of wind turbine airfoil, a sensitivity analysis method of airfoil aerodynamic characteristics based on number theoretical net (NT-net) method and Morris method was proposed. Firstly, a airfoil parameterized model with higher fitting accuracy was constructed; secondly, the calculation principle of NT-net method was described and the method was used to sample polynomial coefficients of airfoil parameterized model; then, taking wind turbine airfoil S832 as research object, global sensitivity analysis of airfoil aerodynamic characteristics was carried out by Morris method; finally, the influence of polynomial coefficients of parameterized model of wind turbine airfoil on airfoil profile and aerodynamic characteristics under specific conditions was further analyzed. The results showed that main factors affecting airfoil aerodynamic characteristics were maximum relative thickness, maximum relative camber, leading edge radius and trailing edge thickness of airfoil. When the angle of attack of the incoming flow was smaller, taking the appropriate smaller value of the maximum relative thickness and the maximum relative camber, and taking the appropriate larger value of the leading edge radius could effectively improve the aerodynamic characteristics of wind turbine airfoil under that working condition, and also verified that the calculation efficiency of NT-net method was higher. The research results provide a theoretical reference for the aerodynamic design of wind turbine airfoil.



Key wordsnumber theoretic net (NT-net) method      sensitivity analysis      aerodynamic characteristics      wind turbine airfoil     
Received: 08 October 2021      Published: 05 September 2022
CLC:  TK 83  
Corresponding Authors: Xiang-heng MENG     E-mail: zjwen732@163.com;meng372021@163.com
Cite this article:

Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method. Chin J Eng Design, 2022, 29(4): 438-445.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.055     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I4/438


基于数论网格法与Morris法的翼型气动特性敏感性分析

针对在风力机翼型气动特性敏感性分析中计算效率较低的问题,提出了一种基于数论网格(number theoretic net,NT-net)法与Morris法的翼型气动特性敏感性分析方法。首先,构建了拟合精度较高的翼型参数化模型;其次,阐述了NT-net法的计算原理,采用NT-net法对翼型参数化模型的多项式系数进行抽样;然后,以风力机翼型S832为研究对象,采用Morris法进行翼型气动特性的全局敏感性分析;最后,进一步分析在特定工况下风力机翼型参数化模型的多项式系数对翼型外形及气动特性的影响。结果表明:影响翼型气动特性的主要因素依次为翼型的最大相对厚度和最大相对弯度、前缘半径和后缘厚度;当来流攻角较小时,最大相对厚度和最大相对弯度取适当的较小值、前缘半径取适当的较大值可有效增强该工况下风力机翼型的气动特性,同时也验证了NT-net法的计算效率更高。研究结果为风力机翼型气动设计提供了理论参考。


关键词: 数论网格法,  敏感性分析,  气动特性,  风力机翼型 
Fig.1 Schematic of geometric characteristics of airfoil
Fig.2 Sensitivity analysis flow of aerodynamic characteristics of airfoil
Fig.3 Parameterized error of airfoil model
Fig.4 Parameterized model of airfoil
Fig.5 Variation coefficient of lift-drag ratio to design variables at θ=5°
方法建模时长/s计算次数
MCS法205×12=2 4601 414
NT-net法180×12=2 1601 212
Table 1 Modeling time of MCS method and NT-net method and calculation times of global sensitivity analysis
Fig.6 Geometric profile of airfoil 1 indirectly fitted with z1maxz7min
翼型前缘半径/mmε
S8320.7048.049 2
翼型10.7548.708 3
Table 2 Comparison of leading edge radius and lift-drag ratio between airfoil 1 and airfoil S832
Fig.7 Geometric profile of airfoil 2 indirectly fitted with z4maxz9min
翼型最大相对厚度/%最大相对弯度/%升阻比ε
S83214.895.1148.049 2
翼型216.317.5846.952 8
Table 3 Comparison of maximum relative thickness, maximum relative camber and lift-drag ratio between airfoil 2 and airfoil S832
[1]   唐新姿,袁可人,王效禹,等.自然风速下低雷诺数风力机翼型气动特性随机数值分析[J].湖南大学学报(自然科学版),2021,48(2):45-52.
TANG Xin-zi, YUAN Ke-ren, WANG Xiao-yu, et al. Stochastic numerical analysis on aerodynamic characteristics of low Reynolds number wind turbine airfoil under natural wind speed[J]. Journal of Hunan University (National Science), 2021, 48(2): 45-52.
[2]   陈进,张石强, EECEN P J,等.风力机翼型参数化表达及收敛特性[J].机械工程学报,2010,46(10):132-138. doi:10.3901/jme.2010.10.132
CHEN Jin, ZHANG Shi-qiang, EECEN P J, et al. Parametric representation and convergence of wind turbine airfoils[J]. Journal of Mechanical Engineering, 2010, 46(10): 132-138.
doi: 10.3901/jme.2010.10.132
[3]   LIU D, LITVINENKO A, SCHILLINGS C, et al. Quantification of airfoil geometry-induced aerodynamic uncertainties comparison of approaches[J]. SIAM/ASA Journal on Uncertainty Quantification, 2017, 5(1): 334-352. doi:10.1137/15m1050239
doi: 10.1137/15m1050239
[4]   于佳鑫,陈江涛,王晓东,等.考虑几何不确定性的翼型随机参数化方法研究[J].工程热物理学报,2021,42(5):1184-1192.
YU Jia-xin, CHEN Jiang-tao, WANG Xiao-dong, et al. Research on stochastic parameterization of airfoil considering geometric uncertainty[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1184-1192.
[5]   CABONI M, MINISCI E, RICCARDI A. Aerodynamic design optimization of wind turbine airfoils under aleatory and epistemic uncertainty[J]. Journal of Physics: Conference Series, 2018: 042011-042011. doi: 10.1088/1742-6596/1037/4/042011
doi: 10.1088/1742-6596/1037/4/042011
[6]   CAMPOBASSO M S, MINISCI E, CABONI M. Aerodynamic design optimization of wind turbine rotors under geometric uncertainty[J]. Wind Energy, 2016, 19(1): 51-65. doi:10.1002/we.1820
doi: 10.1002/we.1820
[7]   JU Y P, ZHANG C H. Multi-point robust design optimization of wind turbine airfoil under geometric uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(2):245-261. doi:10.1177/0957650911426540
doi: 10.1177/0957650911426540
[8]   ERNST B, SCHMITT H, SEUME J R. Effect of geometric uncertainties on the aerodynamic characteristic of offshore wind turbine blades[J]. Journal of Physics: Conference Series, 2014, 555: 012033-012033. doi: 10.1088/1742-6596/555/1/012033
doi: 10.1088/1742-6596/555/1/012033
[9]   王晓东,康顺.多项式混沌方法在随机方腔流动模拟中的应用[J].中国科学(技术科学),2011,41(6):790-798.
WANG Xiao-dong, KANG Shun. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Science China (Technological Sciences), 2011, 41(6): 790-798.
[10]   刘智益,王晓东,康顺.多元多项式混沌法在随机方腔流动模拟中的应用[J].工程热物理学报,2012,33(3):419-422.
LIU Zhi-yi, WANG Xiao-dong, KANG Shun. Application of multi-dimensional polynomial chaos on numerical simulations of stochastic cavity flow[J]. Journal of Engineering Thermophysics, 2012, 33(3): 419-422.
[11]   姜昌伟,刘星,石尔,等.基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化[J].应用数学和力学,2021,42(5):481-491.
JIANG Chang-wei, LIU Xing, SHI Er, et al. Uncertainty quantification of flow and heat transfer problems with stochastic boundary conditions based on the intrusive polynomial chaos expansion method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 481-491.
[12]   刘全,王瑞利,林忠.非嵌入式多项式混沌方法在拉氏计算中的应用[J].固体力学学报,2013,33(S1):224-233.
LIU Quan, WANG Rui-li, LIN Zhong. Uncertainty quantification for Lagrangian computation using non-intrusive polynomial chaos[J]. Chinese Journal of Solid Mechanics, 2013, 33(S1): 224-233.
[13]   梁霄,王瑞利.基于非嵌入多项式混沌的爆轰不确定度量化[J].计算力学学报,2019,36(5):672-677. doi:10.7511/jslx20180817001
LIANG Xiao, WANG Rui-li. Uncertainty quantification of detonation based on non-intrusive polynomial chaos[J]. Chinese Journal of Computational Mechanics, 2019, 36(5): 672-677.
doi: 10.7511/jslx20180817001
[14]   邬晓敬,张伟伟,宋述芳,等.翼型跨声速气动特性的不确定性及全局灵敏度分析[J].力学学报,2015,47(4):587-595. doi:10.6052/0459-1879-14-372
WU Xiao-jing, ZHANG Wei-wei, SONG Shu-fang, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 587-595.
doi: 10.6052/0459-1879-14-372
[15]   祝宏宇,王刚,刘毅,等.考虑不确定性的超声速双翼气动特性分析[J].西北工业大学学报,2019,37(5):909-917. doi:10.3969/j.issn.1000-2758.2019.05.008
ZHU Hong-yu, WANG Gang, LIU Yi, et al. Uncertainty analysis of supersonic biplane's aerodynamic characteristics[J]. Journal of Northwest Polytechnic University, 2019, 37(5): 909-917.
doi: 10.3969/j.issn.1000-2758.2019.05.008
[16]   WANG Y, LIU S, QIN N, et al. Quantification of airfoil aerodynamics due to geometric uncertainties based on adjoint method[J]. Journal of the Chinese Institute of Engineers, 2021, 44(7): 618-626. doi:10.1080/02533839. 2021.1940291
doi: 10.1080/02533839. 2021.1940291
[17]   PETER J E V, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches[J]. Computers & Fluids, 2010, 39(3): 373-391. doi:10.1016/j.compfluid.2009.09.013
doi: 10.1016/j.compfluid.2009.09.013
[18]   方开泰,王元.数论方法在统计中的应用[M].北京:科学出版社,1996:19-54.
FANG Kai-tai, WANG Yuan. Application of number theory in statistics[M]. Beijing: Science Press, 1996: 19-54.
[19]   刘飞,窦毅芳,张为华.数论网格法在极大似然估计中的应用[J].系统仿真学报,2006,18(9):2534-2536. doi:10.3969/j.issn.1004-731X.2006.09.039
LIU Fei, DOU Yi-fang, ZHANG Wei-hua. Application of number theoretic methods in maximum likelihood estimation[J]. Journal of System Simulation, 2006, 18(9): 2534-2536.
doi: 10.3969/j.issn.1004-731X.2006.09.039
[20]   赖斌,蔡树英,杨金忠.稀疏网格与数论网格在饱和-非饱和流随机模拟中的应用与比较[J].武汉大学学报(工学版),2015,48(5):599-607.
LAI bin, CAI Shu-ying, YANG Jin-zhong. Number net theory and sparse grid theory for stochastic modelling of saturated and unsaturated flow simulation[J]. Journal of Wuhan University (Engineering Edition), 2015, 48(5): 599-607.
[21]   MORGADO J, VIZINHO R, SILVESTRE M A R, et al. XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils[J]. Aerospace Science and Technology, 2016, 52: 207-214. doi:10.1016/j.ast.2016.02.031
doi: 10.1016/j.ast.2016.02.031
[22]   SHU Z, JIRUTITIJAROEN P, SILVA A M L, et al. Accelerated state evaluation and Latin hypercube sequential sampling for composite system reliability assessment[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1692-1700. doi:10.1109/tpwrs.2013. 2295113
doi: 10.1109/tpwrs.2013. 2295113
[23]   MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174. doi:10.1080/00401706.1991.10484804
doi: 10.1080/00401706.1991.10484804
[24]   CAMPOLONGO F, CARIBONI J, SALTELLI A. An effective screening design for sensitivity analysis of large models[J]. Environmental Modelling & Software, 2007, 22(10): 1509-1518. doi:10.1016/j.envsoft. 2006. 10.004
doi: 10.1016/j.envsoft. 2006. 10.004
[1] TAO Xiao-dong, GUO An-fu, LI Hui, HAN Wei, LI Wan-cai, LI Tao. Performance analysis and optimization of disc ditcher based on sensitivity analysis[J]. Chin J Eng Design, 2022, 29(1): 59-65.
[2] TAO Xiao-hui, LI Guo-long, XU Kai, LI Chuan-zhen. Sensitivity analysis of geometric error of worm wheel gear grinding machine[J]. Chin J Eng Design, 2020, 27(1): 111-120.
[3] DU Yi-Xian, WANG Wei, LI Ran, FU Jun-Jian. Research on sensitivity filtering method for structural topology optimization[J]. Chin J Eng Design, 2012, 19(1): 20-24.
[4] QIAN Xue-Yi, WU Shuang. Multi-objective optimization of the non-symmetrical gear agglutinate strength based on elastohydrodynamic lubrication theory[J]. Chin J Eng Design, 2010, 17(6): 426-429.
[5] HE Xiang-Dong, ZHANG Yi-Min, WEN Bang-Chun. Stable reliability-based sensitivity design of compressive bar[J]. Chin J Eng Design, 2006, 13(5): 295-297.