Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (6): 578-584    DOI: 10.3785/j.issn.1006-754X.2016.06.009
    
Analysis of meshing gear surface temperature based on quadratic regression orthogonal design
WANG Chun-hua, WANG Zhong-xian, XU Han-wen
College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Download: HTML     PDF(929KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to alleviate the inherent problems which appear welding bond on the gear tooth surface caused by local high temperature in the process of meshing transmission, 27 groups of factors level test were designed based on quadratic regression orthogonal design method, a single tooth was analyzed using ANSYS software by adding boundary conditions, and the highest temperature of a single tooth was got by using the Design-Expert software to analyze the test data. The results showed that the mean square of speed z1, torque z2, gear tooth width z3 and gear pressure angle z4 was 556.82, 1813.69, 278.17, 20.02, respectively. The order of four factors affected the highest temperature of tooth body was torque z2, speed z1, gear tooth width z3, gear pressure angle z4; the highest temperature of gear body would increase with the increase of speed z1, torque z2 and gear tooth width z3, the highest temperature of gear body would decrease with the increase of gear pressure angle z4. The conclusion has reference value to the gear design.



Key wordsquadratic regression orthogonal design      Design-Expert      meshing gear      temperature     
Received: 25 May 2015      Published: 28 December 2016
CLC:  TH132.4  
  TB114.3  
Cite this article:

WANG Chun-hua, WANG Zhong-xian, XU Han-wen. Analysis of meshing gear surface temperature based on quadratic regression orthogonal design. Chinese Journal of Engineering Design, 2016, 23(6): 578-584.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.06.009     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I6/578


基于二次回归正交设计的啮合齿轮表面温度分析

为了缓解齿轮在啮合传动过程中齿面产生的局部高温导致齿轮表面固有熔焊粘附的问题,基于二次回归正交设计方法设计了27组因素水平试验,利用ANSYS软件对单个齿轮通过添加边界条件进行有限元分析,得到单个齿轮本体最高温度.通过Design-Expert软件对试验数据进行分析处理,得出:齿轮的转速z1、齿轮的转矩z2、齿轮的齿宽z3和齿轮压力角z4均方分别为556.82,1 813.69,278.17,20.02,即影响齿轮本体最高温度响应值的四因素主次顺序为齿轮的转矩z2、齿轮的转速z1、齿轮的齿宽z3和齿轮压力角模数z4;齿轮本体最高温度会随着齿轮的转速z1、齿轮的转矩z2和齿轮的齿宽z3增大而增大;齿轮本体最高温度随着齿轮压力角z4增大而减小.这一结论为齿轮的设计提供借鉴意义.


关键词: 二次回归正交设计,  Design-Expert,  啮合齿轮,  温度 

[1] 黄永晶,阮文韬,宫霞霞.模糊神经网络技术在齿轮热分析中的应用[J].制造业自动化,2012,34(7):76-78. HUANG Yong-jing,RUAN Wen-tao,GONG Xia-xia.The application of fuzzy neural network technology in gear thermal analysis[J].Manufacturing Automation,2012,34(7):76-78.
[2] 孙首群,朱卫光,赵玉香.渐开线轮齿温度场影响因素分析[J].机械设计,2009,26(2):59-62. SUN Shou-qun,ZHU Wei-guang,ZHAO Yu-xiang.Involute gear temperature field influence factor analysis[J].Journal of Mechine Design,2009,26(2):59-62.
[3] 何国旗,严宏志,胡威,等.面齿轮啮合过程中压力角对齿面摩擦生热的影响分析[J].中南大学学报(自然科学版),2012,43(9):3415-3419. HE Guo-qi,YAN Hong-zhi,HU Wei,et al.Influence of pressure angle on friction heat during face-gear meshing process[J].Journal of Central South University (Science and Technology),2012,43(9):3415-3419.
[4] 陈磊,马希直.基于ANSYS的高速齿轮温度场研究[J].机械制造与研究,2009,38(2):110-112. CHEN Lei,MA Xi-zhi.Temperature analysis of high speed gear based on ANSYS[J].Journal of Machinery Manufacturing and Research,2009,38(2):110-112.
[5] 王胜伟,何瑛,何国旗,等.面齿轮啮合齿面瞬态温度场影响因素的仿真分析[J].湖南工业大学学报,2014,5(2):110-112. WANG Sheng-wei,HE Ying,HE Guo-qi,et al.Surface gear mesh surface transient temperature field simulation analysis of influencing factors[J].Journal of Hunan University of Technology,2014,5(2):110-112.
[6] 龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报,2004,40(8):24-29. LONG Hui,ZHANG Guang-hui,LUO Wen-jun.Rotary gear instantaneous contact stress and temperature analysis of the simulation[J].Journal of Mechanical Engineering,2004,40(8):24-29.
[7] 刘彩霞,孙振元,刘军,等.利用二次回归正交设计优化香石竹叶片再生体系中6-BA和NAA的浓度组合[J].核农学报,2008,22(1):45-48. LIU Cai-xia,SUN Zhen-yuan,LIU Jun,et al.Application of quadratic regressive orthogonal design to optimize regeneration system of dianthus caryophyllus L[J].Journal of Nuclear Agricultural Sciences,2008,22(1):45-48.
[8] 工惠,吴兆亮,童应凯,等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发,2006,27(6):19-24. GONG Hui,WU Zhao-liang,TONG Ying-kai,et al.Optimization of the flavomycin fermentation medium by the design of rotation-regression-orthogonal combination[J].Food Research and Development,2006,27(6):19-24.
[9] 朱彩平,曹慧.应用二次回归旋转正交组合设计提取平菇多糖的工艺研究[J].中药材,2010,33(9):1490-1494. ZHU Cai-ping,CAO Hui.Application of quadratic regression orthogonal rotating combination design extraction mushroom polysaccharide technology was studied[J].Journal of Chinese Medicinal Materials,2010,33(9):1490-1494.
[10] 马文杰,郭玉蓉,魏决.应用二次回归旋转正交组合设计提取水溶性苹果多糖的工艺研究[J].食品科学,2009,30(20):105-108. MA Wen-jie,GUO Yu-rong,WEI Jue.Optimization of water-soluble apple polysaccharides extraction using quadratic orthogonal rotation combination design[J].Food Science,2009,30(20):105-108.
[11] 韩秀慧,尹伟伦,工华芳.二次回归正交设计在微型月季组织培养中的应用[J].林业科学,2004,40(4):189-192. HAN Xiu-hui,YI Wei-lun,GONG Hua-fang.Application of quadratic regressive factorial experiment to in vitro culture of miniature rose[J].Scientia Silvae Sinicae,2004,40(4):189-192.
[12] 李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2010:226-235. LI Zhi-xi,DU Shuang-kui.Test optimization design and statistical analysis[M].Beijing:Science Press,2010:226-235.
[13] LONG H, LORD A A,GETHIN D T,et al.Operating temperatures of oil-lubricated edium-speed gears numerical models and experimental results[J].Journal of Aerospace Engineering,2003,217(2):87-106.
[14] 龙慧.高速齿轮传动轮齿的温度模拟及过程参数的敏感性分析[D].重庆:重庆大学机械工程学院,2001:16-76. LONG Hui.Modelling of surface temperature in high-speed gears and sensitivity analysis[D].Chongqing:Chongqing University, College of Mechanical Engineering, 2001:16-76.
[15] 徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M].北京:科学出版社,2010:146-157. XU Xiang-hong,HE Ming-zhu.The test design and the Design-Expert,SPSS application[M].Beijing:Science Press,2010:146-157.

[1] Xiao-hua ZHU,Cong LI,Wei-ji LIU,Bin TAN,Wen XU. Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation[J]. Chinese Journal of Engineering Design, 2022, 29(4): 446-455.
[2] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[3] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[4] ZHONG Liang-chun, KUANG Yu-chun, SHU Feng, ZHANG Cong. Design method of screw motor interference considering the influence of pressure and temperature[J]. Chinese Journal of Engineering Design, 2021, 28(3): 321-328.
[5] WANG Chao, SUN Wen-xu, MA Xiao-jing, CHEN Ji-yang, LUAN Yi-zhong, MA Si-le. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6): 765-770.
[6] MA Ya-chao, ZHANG Peng, HUANG Zhi-qiang, NIU Shi-wei, XIE Dou, DENG Rong. Prediction of dynamic wear trend of PDC bit under the influence of varying temperature and load[J]. Chinese Journal of Engineering Design, 2020, 27(5): 625-635.
[7] WU Cong-kui, HE Bai-yan, YUAN Peng-fei. Thermal-structural analysis of hoop deployable antenna with metal hinges[J]. Chinese Journal of Engineering Design, 2020, 27(3): 349-356.
[8] HUANG Zhi-qiang, ZHANG Wen-yuan, MA Ya-chao, LI Gang, WU Xiao-hong. Research on influence of clearance between sliding shoe and guide plate and oil supply flow on lubrication and cooling status of 6000HP fracturing pump[J]. Chinese Journal of Engineering Design, 2020, 27(1): 59-66.
[9] HUANG Ze-hao, ZHANG Zhen-hua, HUANG Xu, LEI Wei. Analysis of time-varying characteristics of braking instability of drum brake[J]. Chinese Journal of Engineering Design, 2019, 26(6): 714-721.
[10] KONG De-shuai, HU Gao-feng, ZHANG Guan-wei, ZHANG Da-wei. Design and performance analysis of variable preload spindle based on piezoelectric actuator[J]. Chinese Journal of Engineering Design, 2019, 26(6): 743-752.
[11] JIANG Hong-wan. Contrastive study on cutting energy of cemented carbide turning tools before and after improvement[J]. Chinese Journal of Engineering Design, 2019, 26(6): 700-705.
[12] TAN Hui, ZONG Kuan, XIONG Chang-wu, WENG Xia, DU Ping-an. Design and heat transfer performance analysis of leaf vein-shaped microchannel heat sink[J]. Chinese Journal of Engineering Design, 2019, 26(4): 477-483.
[13] YANG Ying, YE Xue-long, YE Chao. Analysis and optimization of thermal performance of brake disc of ultra deep mine hoist[J]. Chinese Journal of Engineering Design, 2019, 26(1): 47-55.
[14] LIU Xiao-qing, LIU Jun-wei, WANG Lu-si, LAI Xiao-ming, ZHAN Qing-xin. Study on thermal characteristics of drilling tools during lunar soil drilling coring process[J]. Chinese Journal of Engineering Design, 2019, 26(1): 73-78.
[15] WANG Heng, SUN Xiao-ming, SHAO Yan, XIAO Hou-kun, ZHANG Xiao-long. Research on tire temperature measurement system based on test bench[J]. Chinese Journal of Engineering Design, 2018, 25(5): 590-596.