Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (4): 508-515    DOI: 10.3785/j.issn.1006-754X.2020.00.055
Whole Machine and System Design     
Research on multi-degree-of-freedom microgravity simulation deployment test system based on suspension method and air flotation method
LI Hai-yue1, CHENG Ze1, ZHAO Dan-ni1, WANG Hao-wei2, LI De-yong1, ZHANG Jia-bo1, SONG Xiao-dong3, ZHAO Lin-na1
1.Beijing Satellite Manufacturing Limited Company, Beijing 100094, China
2.Beijing Insitute of Spacecraft System Engineering, Beijing 100094, China
3.School of Aerospace Science, Beijing Institute of Technology, Beijing 100081, China
Download: HTML     PDF(2572KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In order to meet the requirements of multi-dimensional, multi-degree-of-freedom, high-precision deployment trajectory and high unloading efficiency in the ground-based microgravity simulation deployment test of the three-dimensional space unfolding robotic arm, a multi-degree-of-freedom microgravity simulation deployment test system based on suspension method and air floatation method is designed through analyzing and summarizing the current microgravity simulation deployment test methods. Firstly,the structural design and principle analysis of the designed multi-degree-of-freedom microgravity simulation deployment test system was carried out. Then, the multi-degree-of-freedom microgravity simulation deployment test system was applied to a three-dimensional trajectory microgravity simulation deployment test of a three-dimensional space unfolding robotic arm. The results indicated that deploying process of the three-dimensional space unfolding robotic arm was stable and reliable, and the the air floatation friction resistance, the vertical resistance fluctuation and the additional resistance in the deployment direction generated by the microgravity simulation deployment test system to the robotic arm were small, and the unloading efficiency was higher than 95%, which met the requirements of high precision and high unloading efficiency. The research result can provide reference for the in-depth study of ground simulation deployment test system for multi-degree-of-freedom space unfolding mechanisms.

Received: 22 October 2019      Published: 28 August 2020
CLC:  TH 12  
Cite this article:

LI Hai-yue, CHENG Ze, ZHAO Dan-ni, WANG Hao-wei, LI De-yong, ZHANG Jia-bo, SONG Xiao-dong, ZHAO Lin-na. Research on multi-degree-of-freedom microgravity simulation deployment test system based on suspension method and air flotation method. Chinese Journal of Engineering Design, 2020, 27(4): 508-515.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.055     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I4/508


基于悬吊法和气浮法的多自由度微重力模拟展开试验系统研究

为满足三维空间展开机械臂在进行地面微重力模拟展开试验时对多维度、多自由度、高精度展开轨迹和高卸载效率的要求,通过对当前成熟的微重力模拟展开试验方法进行分析总结,设计了一种基于悬吊法和气浮法的多自由度微重力模拟展开试验系统。首先,对所设计的多自由度微重力模拟展开试验系统进行结构设计和原理分析;然后,将多自由度微重力模拟展开试验系统应用于某三维空间展开机械臂的三维轨迹微重力模拟展开试验。结果表明该三维空间展开机械臂展开过程稳定可靠,且微重力模拟展开试验系统对机械臂产生的气浮运动摩擦阻力、垂直方向阻力波动量和展开方向附加阻力均很小,卸载效率高于95%,满足高精度和高卸载效率的展开要求。研究结果可为多自由度空间可展开机构地面模拟展开试验系统的深入研究提供一定的参考。
[1] WANG Bi-hai, ZHANG Jian, CHEN Yong-liang, PENG Qing-jin, GU Pei-hua. Intelligent decision for adaptive design of shield screw conveyor[J]. Chinese Journal of Engineering Design, 2022, 29(1): 1-9.
[2] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[3] TAO Xiao-dong, GUO An-fu, LI Hui, HAN Wei, LI Wan-cai, LI Tao. Performance analysis and optimization of disc ditcher based on sensitivity analysis[J]. Chinese Journal of Engineering Design, 2022, 29(1): 59-65.
[4] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[5] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[6] WANG Hong-gang, KANG Cun-feng, CHEN Kang-wen, JI Yuan-long, PU Qiu-ran, ZHANG Lei-yu. Study on effect of slider rocker mechanism on rehabilitation of triceps surae[J]. Chinese Journal of Engineering Design, 2021, 28(6): 687-693.
[7] NI Wei-yu, ZHANG Heng, YAO Sheng-wei. Lightweight design of automobile seat frame based on multiple working conditions[J]. Chinese Journal of Engineering Design, 2021, 28(6): 729-736.
[8] NI Zi-jian, LI Wen-qiang, TANG Zhong. Ontology semantic mining and functional semantic retrieval method based on network representation learning[J]. Chinese Journal of Engineering Design, 2021, 28(5): 539-547.
[9] WU Guo-pei, YU Yin-quan, TU Wen-bing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chinese Journal of Engineering Design, 2021, 28(5): 548-558.
[10] ZHENG Yu-chen, JU Feng, WANG Dan, SUN Jing-bin, WANG Ya-ming, CHEN Bai. Design and control research of aeroengine blade detection robot[J]. Chinese Journal of Engineering Design, 2021, 28(5): 625-632.
[11] ZHAO Bo, ZHAO Hai-ming, LIU Chen, HU Gang. Parametric design and optimization of suspended mining head for deep-sea cobalt crust[J]. Chinese Journal of Engineering Design, 2021, 28(5): 559-568.
[12] GAO Xiang, WANG Lin-jun, DU Yi-xian, LI Xiang, XU Liu. Fuzzy optimization design based on cloud model artificial fish swarm algorithm[J]. Chinese Journal of Engineering Design, 2021, 28(4): 433-442.
[13] LI Gang, XU Guang-ming, HUANG Zhi-qiang, QI Wen, HAO Lei. Research on vibrator-ground coupling dynamic stiffness and dynamic damping under excitation of sweep signal[J]. Chinese Journal of Engineering Design, 2021, 28(4): 450-457.
[14] CAO En-guo, WANG Gang, WANG Kun, GAO Yang. Evaluation of walking aid effectiveness of exoskeleton driven by elastic device[J]. Chinese Journal of Engineering Design, 2021, 28(4): 480-488.
[15] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chinese Journal of Engineering Design, 2021, 28(4): 504-510.