Please wait a minute...
Chinese Journal of Engineering Design  2007, Vol. 14 Issue (3): 243-246    DOI:
    
Research on construction of color design system based on neural network and genetic algorithm
SUN  Jing,CHEN  An-Quan,WANG  Shao-Mei
1. School of Arts and Design, Wuhan University of Technology, Wuhan 430070, China;
2. Department of Design Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China;
3. College of Logistic Engineering, Wuhan University of Technology, Wuhan 430063, China
Download: HTML     PDF(401KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Due to advancement in science, development of technology and enhancement of customer's awareness, product lifecycle are greatly shortened and how to help designers master customer's feeling and escalate effectiveness of product innovation in time cannot be ignored. Starting from the theory and knowledge of Kansei engineering, object product, phone fee recoder, is divided into various color components. Then, a poll system designed by color combination theory is made. According to the theory of back-propagation neural network, customer's evaluation is simulated and finally, the optimal color combination through genetic algorithm iteration is gained. The results indicate that this system can carried out successfully with the abovementioned method. A decision support system for evaluation of color combination can be established by employing the results of thisresearch to accelerate design flow. And assistant designer can perform product color design effectively and objectively.

Key wordscolor combination      color image      Kansei engineering      back-propagation neural network      genetic algorithm     
Published: 28 June 2007
Cite this article:

SUN Jing,CHEN An-Quan,WANG Shao-Mei. Research on construction of color design system based on neural network and genetic algorithm. Chinese Journal of Engineering Design, 2007, 14(3): 243-246.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2007/V14/I3/243


基于遗传神经网络的产品配色设计

由于科技的进步和消费者意识的提高,加快了产品的生命周期,如何帮助设计师掌握消费者的感觉,提高产品创新的时效性,是一个不容忽视的问题。从感性工学的理论和知识出发,将目标产品(电话计费器)划分为色块的组合构成,以配色理论制作配色意象问卷,运用倒传递类神经网络学习的特性模拟配色意象评价模式,再通过遗传算法调适与更新的特性搜寻最符合需求意象的配色组合。研究结果显示:通过实验,依据类神经学习与遗传演算推演出的配色组合方式,最终可以架构系统而得以顺利执行,并且提供配色子代的样本作为建议。由本研究的结果可建立一个评估色彩感性的决策支持系统,藉以加快设计流程,辅助设计师以比较有效率且客观的方式进行产品色彩设计。由于科技的进步和消费者意识的提高,加快了产品的生命周期,如何帮助设计师掌握消费者的感觉,提高产品创新的时效性,是一个不容忽视的问题。从感性工学的理论和知识出发,将目标产品(电话计费器)划分为色块的组合构成,以配色理论制作配色意象问卷,运用倒传递类神经网络学习的特性模拟配色意象评价模式,再通过遗传算法调适与更新的特性搜寻最符合需求意象的配色组合。研究结果显示:通过实验,依据类神经学习与遗传演算推演出的配色组合方式,最终可以架构系统而得以顺利执行,并且提供配色子代的样本作为建议。由本研究的结果可建立一个评估色彩感性的决策支持系统,藉以加快设计流程,辅助设计师以比较有效率且客观的方式进行产品色彩设计。

关键词: 配色,  色彩意象,  感性工学,  倒传递神经网络,  遗传算法 
[1] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[2] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.
[3] Xin MI,Hong LI,Yan-qing GUO,Hong-wei GAO,Hao-nan WANG,Yi-fan NING. Parameter optimization of single plunger pump check valve based on linear regression[J]. Chinese Journal of Engineering Design, 2022, 29(6): 705-712.
[4] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[5] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[6] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[7] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[8] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[9] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[10] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Lightweight design of trackless telescopic gantry crane based on response surface method[J]. Chinese Journal of Engineering Design, 2018, 25(3): 288-294.
[11] YUAN Shu-zhi, GAO Hong-ni, WANG Wei, QU Jue, LIU Xiao-wei, LI Kang. Multi-image evaluation for human-machine interface based on Kansei engineering[J]. Chinese Journal of Engineering Design, 2017, 24(5): 523-529.
[12] TANG Wei, XIE Yan-min, HUANG Ren-yong, ZHANG Fei, PAN Bei-bei. Constitutive parameter inverse for nonisothermal stamping of magnesium alloy based on adaptive SVR-ELM mixture surrogate model[J]. Chinese Journal of Engineering Design, 2017, 24(5): 536-544.
[13] CHENG Bing, YU Lan-feng, WU Yong-ming, FU Kang. Research on lightweight design of underfloor lifting system based on response surface method[J]. Chinese Journal of Engineering Design, 2016, 23(6): 606-611.
[14] QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong. Research on the method of multi-case topology optimization of frame structure based on the weight ratio[J]. Chinese Journal of Engineering Design, 2016, 23(5): 444-452.
[15] LI Xiao-huo, SHI Shang-wei, WENG Zheng-yang, QIAN Ya-sen, LI Yan, YANG Zi-jia. Dynamic optimization of working mechanism for impacting and crushing rock road-header based on BP-GA[J]. Chinese Journal of Engineering Design, 2016, 23(4): 358-363.