Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (3): 367-372    DOI: 10.3785/j.issn.1006-754X.2025.05.108
Reliability and Quality Design     
Failure analysis of insulation part for high-temperature electrical connector
Liqiang ZHONG(),Qibei LI,Hongjie GUO,Ping QIAN,Wenhua CHEN()
National and Local Joint Engineering Research Center for Reliability Analysis and Testing of Electromechanical Products, Zhejiang Sci-Tech University, Hangzhou 310018, China
Download: HTML     PDF(2045KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Insulating materials tend to age, crack and even carbonize in high-temperature environments, resulting in a decline of insulation performance of high-temperature electrical connector and failure to meet the working requirements of equipment. Taking the J58 high-temperature electrical connector of a certain equipment as the research subject, the failure mechanism of its polyimide (PI) insulation part was analyzed and verified.At the same time, the variation of its insulation performance was investigated through high-temperature deterioration test. The results showed that after the PI insulation part was continuously operated at 450 ℃ for 30 minutes, the insulation part showed carbonization trend, and its insulation resistance decreased significantly, but it was still greater than 5 GΩ, which could still meet the working requirements of a certain type of hypersonic missile.The research results provide a basis for the reliability design, selection and later maintenance decisions of high-temperature electrical connector, which is conducive to enhancing the reliability of equipment such as hypersonic missile.



Key wordshigh-temperature electrical connector      insulating performance      failure mechanism     
Received: 20 January 2025      Published: 02 July 2025
CLC:  TB 114  
Corresponding Authors: Wenhua CHEN     E-mail: zlq001@zstu.edu.cn;chenwh @zstu.edu.cn
Cite this article:

Liqiang ZHONG,Qibei LI,Hongjie GUO,Ping QIAN,Wenhua CHEN. Failure analysis of insulation part for high-temperature electrical connector. Chinese Journal of Engineering Design, 2025, 32(3): 367-372.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.108     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I3/367


高温电连接器绝缘件失效分析

针对高温环境下绝缘材料易老化裂解乃至碳化,导致高温电连接器绝缘性能下降而不能满足型号装备工作要求的问题,以某型号装备用J58型高温电连接器为研究对象,分析并验证了其聚酰亚胺(polyimide, PI)绝缘件的失效机理。同时,通过高温劣化实验研究了其绝缘性能的变化情况。实验结果表明:PI绝缘件在450 ℃下持续工作30 min后出现了碳化趋势,其绝缘电阻显著下降,但大于5 GΩ,仍可满足某型高超导弹的工作要求。研究结果为高温电连接器的可靠性设计、选用及后期维护决策提供了依据,并有助于提升高超导弹等型号装备的可靠性。


关键词: 高温电连接器,  绝缘性能,  失效机理 
Fig.1 Schematic of structure of J58 high-temperature electrical connector
Fig.2 Appearance of insulation part
Fig.3 Molecular structure of homophenylene type PI
性能指标PIFX-502玻纤增强酚醛树脂聚醚醚酮
体积电阻/(Ω·m)1016101210151016
耐电压/(kV/mm)251318~23
耐温(短时)/℃500400300
Table 1 Performance comparison of PI with FX-502 glass fiber reinforced phenolic resin and polyetheretherketone
Fig.4 Schematic diagram of PI cleavage reaction process
Fig.5 Schematic diagram of PI crosslinking reaction process
Fig.6 Insulating performance deterioration test platform for high-temperature electrical connector
Fig.7 Distribution of insulation resistance measuring points
序号实验前实验后变化值
1-1139.77.5132.2
1-2118.711.3107.4
1-3131.36.9124.4
1-4142.17.6134.5
1-5146.910.9136.0
1-6125.17.9117.2
2-1141.310.9130.4
2-2133.27.4125.8
2-3143.17.3135.8
2-4134.18.7125.4
2-5146.78.5138.2
2-6181.321.4159.9
3-1177.415.1162.3
3-2163.717.1146.6
3-3147.810.9136.9
3-4163.717.7146.0
3-5167.312.9154.4
3-6158.716.9141.8
4-1171.17.2163.9
4-2127.68.2119.4
4-3167.931.3136.6
4-4169.311.6157.7
4-5173.213.4159.8
4-6168.912.5156.4
Table 2 Insulation resistance of resistance measuring points before and after deterioration test
方差来源离差平方和自由度均方离差F
组间差异2 260.893753.62944.473 308
组内差异3 369.4520168.4725
总计5 630.3423
Table 3 Variance analysis results of insulation resistance
Fig.8 Boxplot of insulation resistance before and after deterioration test
Fig.9 Appearance of insulation part after deterioration test
Fig.10 Micromorphology of insulation part surface before and after deterioration test
基团波峰/cm-1
酰亚胺基团C??O键1 720
酰亚胺基团C—N键1 380
C—H键3 100~2 900
C—O—C醚键1 100~1 000
Table 4 Infrared absorption peaks of PI characteristic groups
Fig.11 Infrared spectrum of PI
[[8]]   LI L. Preparation, pyrolysis mechanism, and structure modification of polyimide based carbon membrane[D]. Dalian: Dalian University of Technology, 2013.
doi: 10.18057/ijasc.2013.9.3.6
[[9]]   李琳, 祁文博, 王虹, 等. 聚酰亚胺的化学结构在炭膜制备过程中的变化规律及热解机理[J]. 新型炭材料, 2015, 30(5): 459-465.
LI L, QI W B, WANG H, et al. Pyrolysis of polyimide membranes from the same dianhydride monomer and different diamines to form carbon membranes[J]. New Carbon Materials, 2015, 30(5): 459-465.
[[10]]   莫雅俊, 张灵, 周远翔, 等. 基于理化分析的热老化聚酰亚胺薄膜的电导特性[J]. 高电压技术, 2019, 45(4): 1241-1248.
MO Y J, ZHANG L, ZHOU Y X, et al. Conduction current characteristics of thermally aged polyimide films based on physico-chemical analysis[J]. High Voltage Engineering, 2019, 45(4): 1241-1248.
[[11]]   郭鸿杰. 高温振动应力下电连接器的可靠性试验评估[D]. 杭州: 浙江理工大学, 2023.
GUO H J. Reliability test evaluation of electrical connectors under high temperature and vibration stress [D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[[12]]   阎敬灵, 孟祥胜, 王震, 等. 热固性聚酰亚胺树脂研究进展[J]. 应用化学, 2015, 32(5): 489-497.
YAN J L, MENG X S, WANG Z, et al. Progress in thermosetting polyimide resins[J]. Chinese Journal of Applied Chemistry, 2015, 32(5): 489-497.
[[13]]   HE D L, LIU X, JIAO F K. Investigation on flame-retardant, thermal and mechanical properties of glass fiber reinforced polyimide composites[J]. Polymer Composites, 2024, 45(1): 350-359.
[[14]]   ZHANG P P, ZHANG K, DOU S L, et al. Mechanical, dielectric, and thermal attributes of polyimides stemmed out of 4, 4’-diaminodiphenyl ether[J]. Crystals, 2020, 10(3): 173.
[[15]]   崔永丽, 张仲华, 江利, 等. 聚酰亚胺的性能及应用[J]. 塑料科技, 2005, 33(3): 50-53, 64.
[[1]]   ZHANG X X, LI K, XU J. The research of insulation failure on signals transmission in electrical connector[C]//The Second International Conference on Mechanic Automation and Control Engineering, Hohhot, China, Jul. 15-17, 2011.
[[2]]   王志廷. 耐高温分离电连接器研究与开发[D]. 杭州: 浙江工业大学, 2018.
[[15]]   CUI Y L, ZHANG Z H, JIANG L, et al. Applications and properties of polyimide[J]. Plastics Science and Technology, 2005, 33(3): 50-53, 64.
[[16]]   解竹青, 黄晓中. 高性能绝缘材料PEEK在微特电机中的应用[J]. 微特电机, 2005, 33(8): 45-46.
[[2]]   WANG Z T. The research and development of high temperature resistant separation electrical connector[D]. Hangzhou: Zhejiang University of Technology, 2018.
[[3]]   郑晓凡. 高温密封电连接器设计研究[D]. 杭州: 浙江工业大学, 2017.
ZHENG X F. Optimization design and research of elevated temperature sealed electrical connector [D]. Hangzhou: Zhejiang University of Technology, 2017.
[[4]]   MIYAUCHI M, ISHIDA Y, OGASAWARA T, et al. Novel phenylethynyl-terminated PMDA-type polyimides based on KAPTON backbone structures derived from 2-phenyl-4, 4’-diaminodiphenyl ether[J]. Polymer Journal, 2012, 44(9): 959-965.
[[5]]   HUANG X W, LI Q M, LIU T, et al. Research on Kapton aerobic pyrolysis by using ReaxFF molecular dynamics simulation[C]//2016 IEEE International Conference on High Voltage Engineering and Application. Chengdu, China, Sept. 19-22, 2016.
[[6]]   梁敏, 陈伟. 工程塑料聚酰亚胺的性能及应用[J]. 化工时刊, 2015, 29(10): 23-24, 40.
[[16]]   XIE Z Q, HUANG X Z. Application of high performance insulating material PEEK in micro-motor[J]. Small & Special Electrical Machines, 2005, 33(8):45-46.
[[17]]   王友维. 电连接器用G100硅橡胶绝缘件可靠性建模与试验评估的研究[D]. 杭州: 浙江理工大学, 2023.
[[6]]   LIANG M, CHEN W. Applications and properties of polyimide[J]. Chemical Industry Times, 2015, 29(10): 23-24, 40.
[[7]]   乌江, 李帅强, 何敏恒, 等. 不同温度下聚酰亚胺薄膜陷阱特性对其绝缘性能的影响[J]. 高电压技术, 2022, 48(12): 4873-4881.
[[17]]   WANG Y W. Study on reliability modeling and test evaluation of G100 silicone rubber insulator forelectrical connectors[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[[18]]   钱萍, 刘鑫雨, 陈文华, 等. 电连接器用聚氨酯胶密封件贮存可靠性建模[J]. 机械工程学报, 2024, 60(20): 361-371.
QIAN P, LIU X Y, CHEN W H, et al. Storage reliability modeling of polyurethane seals for electrical connectors[J]. Journal of Mechanical Engineering, 2024, 60(20): 361-371.
[[19]]   段玉兵, 韩明明, 王兆琛, 等. 不同热老化温度下高压电缆绝缘特性及失效机理[J]. 电工技术学报, 2024, 39(1): 45-54.
[[7]]   WU J, LI S Q, HE M H, et al. Effect of trap characteristics on insulation performance of polyimide film at different temperatures[J]. High Voltage Engineering, 2022, 48(12): 4873-4881.
[[8]]   李琳. 聚酰亚胺基炭膜的制备、热解机理及结构调控[D]. 大连: 大连理工大学, 2013. doi:10.18057/ijasc.2013.9.3.6
doi: 10.18057/ijasc.2013.9.3.6
[[19]]   DUAN Y B, HAN M M, WANG Z C, et al. Insulation characteristics and failure mechanism of high-voltage cables under different thermal aging temperatures[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 45-54.
[[20]]   鲁旭, 韩帅, 李庆民, 等. 聚酰亚胺高温裂解机理的反应分子动力学模拟[J]. 电工技术学报, 2016, 31(12): 14-23.
LU X, HAN S, LI Q M, et al. Reactive molecular dynamics simulation of polyimide pyrolysis mechanism at high temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 14-23.
[1] Haibo SU,Bohui CHEN,Xi WU,Liang WANG. Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material[J]. Chinese Journal of Engineering Design, 2024, 31(3): 301-308.
[2] CHEN Wen-Hua, FANG Jing-Min, MA Zi-Kui, QIAN Ping, WU Hai-Jun. Technique method for failure detection of submersible pump[J]. Chinese Journal of Engineering Design, 2007, 14(6): 443-448.