Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 301-308    DOI: 10.3785/j.issn.1006-754X.2024.03.222
Theory and Method of Mechanical Design     
Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material
Haibo SU1(),Bohui CHEN1,Xi WU2,3,Liang WANG1()
1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2.School of Engineering, Hangzhou City University, Hangzhou 310015, China
3.Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou 310015, China
Download: HTML     PDF(1761KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The classical fracture phase-field model is a variational method based on brittle fracture theory, which cannot accurately characterize the quasi-brittle fracture behavior of composite material. Based on this, a multi-phase-field model was proposed to describe the multi-pattern cohesive fracture behavior of fiber reinforced composites material. A hybrid cohesive fracture phase-field model was proposed by reasonably defining the phase-field driving force and the damage constitutive relationship for the anisotropic material, and the corresponding evolution equation and strength criterion were derived. The model was used to simulate the crack propagation and failure of three kinds of composite plates. The results showed that the proposed multi-phase-field model could effectively simulate the multi-pattern cohesive fracture behavior of composite material, and had high application value.



Key wordscomposite materials      phase-field modeling      cohesive fracture      failure mechanism     
Received: 13 December 2023      Published: 27 June 2024
CLC:  TB 332  
Corresponding Authors: Liang WANG     E-mail: Harbour@sjtu.edu.cn;wang_liang@sjtu.edu.cn
Cite this article:

Haibo SU,Bohui CHEN,Xi WU,Liang WANG. Phase-field model for multi-pattern cohesive fracture in fiber reinforced composite material. Chinese Journal of Engineering Design, 2024, 31(3): 301-308.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.222     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/301


纤维增强复合材料多模式内聚断裂的相场模型

经典的断裂相场法是基于脆性断裂理论建立的变分方法,因此其无法准确描述复合材料的准脆性断裂行为。基于此,提出了一种多相场模型来描述纤维增强复合材料的多模式内聚断裂行为。通过对各向异性相场驱动力和损伤本构关系的合理定义,提出了一种混合型内聚断裂相场模型,并通过推导得到了相应的演化方程与强度准则。采用该模型进行了3种复合材料板的裂纹扩展及失效仿真,结果表明,所提出的多相场模型能够有效模拟复合材料的多模式内聚断裂行为,具有较高的应用价值。


关键词: 复合材料,  相场模拟,  内聚断裂,  失效机理 
Fig.1 Schematic of fiber and matrix cracks in solid domain
Fig.2 Schematic of geometric dimension and opening position of single edge notched composite specimen
参数类型参数数值
弹性参数E1 /GPa114.8
E2 /GPa11.7
G12 /GPa9.66
v120.21
断裂参数XT /MPa1 500
YT /MPa8.5
SL /MPa120
GL /(N/mm)106.3
GT /(N/mm)0.277 4
GSL /(N/mm)0.787 9
Table 1 Characteristic parameters of composite material HTA/6376
Fig.3 Crack of single edge notched composite specimen
Fig.4 Displacement-load test curves of single edge notched composite specimen
Fig.5 Schematic of geometric dimensions and boundary conditions of single-layer composite plate with variable angle of notch
参数类型参数数值
弹性参数E1 /GPa171
E2 /GPa9.08
G12 /GPa5.29
v120.32
断裂参数XT /MPa2 325
YT /MPa62.3
SL /MPa89.6
GL /(N/mm)97.8
GT /(N/mm)0.277
GSL /(N/mm)0.788
Table 2 Characteristic parameters of composite plate material IM7/8552
Fig.6 Crack propagation process of laminated board [0°/-22.5°/0°/22.5°]
Fig.7 Failure patterns of laminated board [0°/0°/-22.5°/22.5°] and [0°/0°/-30°/-30°]
Fig.8 Schematic of geometric dimensions and boundary conditions of perforated composite laminates
参数类型参数数值
弹性参数E1 /GPa161
E2 /GPa11.4
G12 /GPa5.17
v120.32
断裂参数XT /MPa2 806
YT /MPa60
SL /MPa90
GL /(N/mm)112.7
GT /(N/mm)0.277
GSL /(N/mm)0.63
Table 3 Characteristic parameters of laminate material IM7/8552
Fig.9 Failure pattern of perforated composite laminates [0°/90°]
Fig.10 Multiple failure pattern of perforated composite laminates
[1]   白翠平,马其华,周天俊. 车用CFRP油底壳的结构与制造工艺并行优化设计[J].工程设计学报,2020,27(5):608-615. doi:10.3785/j.issn.1006-754X.2020.00.075
BAI C P, MA Q H, ZHOU T J. Concurred optimal design of structure and manufacturing process of CFRP oil pan for vehicles[J]. Chinese Journal of Engineering Design, 2020, 27(5): 608-615.
doi: 10.3785/j.issn.1006-754X.2020.00.075
[2]   郝春永,王栋亮,郑津洋,等. 铝内胆复合材料储氢瓶爆破压力与疲劳寿命关系研究[J].工程设计学报,2021,28(5):594-601. doi:10.3785/j.issn.1006-754X.2021.00.072
HAO C Y, WANG D L, ZHENG J Y, et al. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chinese Journal of Engineering Design, 2021, 28(5): 594-601.
doi: 10.3785/j.issn.1006-754X.2021.00.072
[3]   李佳,宋梅利,冯君,等. 面向激光增材制造的仿生薄壁结构抗冲击研究[J].工程设计学报,2024,31(1):67-73. doi:10.3785/j.issn.1006-754X.20224.03.317
LI J, SONG M L, FENG J, et al. Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing[J]. Chinese Journal of Engineering Design, 2024, 31(1): 67-73.
doi: 10.3785/j.issn.1006-754X.20224.03.317
[4]   郑传祥,王亮,魏双,等. 基于微观力学的复合材料气瓶爆破强度研究[J].工程设计学报,2016,23(5):461-467. doi:10.3785/j.issn.1006-754X.2016.05.009
ZHENG C X, WANG L, WEI S, et al. Micromechanics-based burst failure analysis of composite vessel used for hydrogen storages[J]. Chinese Journal of Engineering Design, 2016, 23(5): 461-467.
doi: 10.3785/j.issn.1006-754X.2016.05.009
[5]   冯鹏.复合材料在土木工程中的发展与应用[J].玻璃钢/复合材料,2014(9):99-104. doi:10.3969/j.issn.1003-0999.2014.09.013
FENG P. Development and application of composite in civil engineering[J]. Fiber Reinforced Plastics/Composites, 2014 (9): 99-104.
doi: 10.3969/j.issn.1003-0999.2014.09.013
[6]   NGO D, SCORDELIS A C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163.
[7]   RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344.
[8]   FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
[9]   彭帆,马玉娥,黄玮,等.基于相场法的复合材料失效分析研究进展[J].复合材料学报,2023,40(5):2495-2506.
PENG F, MA Y E, HUANG W, et al. Failure analysis of composite materials based on phase field method: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2495-2506.
[10]   CLAYTON J D, KNAP J. Phase field modeling of directional fracture in anisotropic polycrystals[J]. Computational Materials Science, 2015, 98: 158-169.
[11]   ZHANG P, HU X F, BUI T Q, et al. Phase field modeling of fracture in fiber reinforced composite laminate[J]. International Journal of Mechanical Sciences, 2019, 161-162: 105008. doi:10.1016/j.ijmecsci.2019. 07.007 .
doi: 10.1016/j.ijmecsci.2019. 07.007
[12]   张鹏.纤维增强复合材料破坏过程模拟的相场模型研究[D].大连:大连理工大学,2020.
ZHANG P. Phase field modeling of fracture in fiber reinforced composite laminate[D]. Dalian: Dalian University of Technology, 2020.
[13]   SUPRIATNA D, YIN B, KONOPKA D. An anisotropic phase-field approach accounting for mixed fracture modes in wood structures within the representative crack element framework[J]. Engineering Fracture Mechanics, 2022, 269: 108514.
[14]   TEICHTMEISTER S, KIENLE D, ALDAKHEEL F, et al. Phase field modeling of fracture in anisotropic brittle solids[J]. International Journal of Non-Linear Mechanics, 2017, 97: 1-21.
[15]   BLEYER J, ALESSI R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 213-236.
[16]   DEAN A, KUMAR P K A V, REINOSO J, et al. A multiphase-field fracture model for long fiber reinforced composites based on the Puck theory of failure[J]. Composite Structures, 2020, 251: 112446.
[17]   AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209-1229.
[18]   NGUYEN T T, YVONNET J, BORNERT M, et al. On the choice of parameters in the phase field method for simulating crack initiation with experimental validation[J]. International Journal of Fracture, 2016, 197(2): 213-226.
[19]   WU J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99.
[20]   WU J Y, NGUYEN V P. A length scale insensitive phase-field damage model for brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42.
[21]   QUINTANAS-COROMINAS A, REINOSO J, CASONI E, et al. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials[J]. Composite Structures, 2019, 220: 899-911.
[22]   AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
[23]   CAHILL L M A, NATARAJAN S, BORDAS S P A, et al. An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae[J]. Composite Structures, 2014, 107: 119-130.
[1] XU Zhen-Qin, HAN Bing. Reliability analysis of composite seal cover based on transient dynamics[J]. Chinese Journal of Engineering Design, 2009, 16(5): 354-357.
[2] CHEN Wen-Hua, FANG Jing-Min, MA Zi-Kui, QIAN Ping, WU Hai-Jun. Technique method for failure detection of submersible pump[J]. Chinese Journal of Engineering Design, 2007, 14(6): 443-448.