Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (4): 463-473    DOI: 10.3785/j.issn.1006-754X.2025.04.187
Robotic and Mechanism Design     
Topology synthesis research of dual-input-dual-output coupling mechanism for tracked vehicle
Qingkun XING1,2(),Shuangyuan YANG3,Datong QIN1,Xueliang LI3(),Zengxiong PENG4
1.State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
2.Key Laboratory of Vehicle Transmission, China North Vehicle Research Institute, Beijing 100072, China
3.Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004, China
4.Key Laboratory of Vehicle Transmission, Beijing Institute of Technology, Beijing 100081, China
Download: HTML     PDF(3551KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to decrease the power demand of drive motors in the transmission systems of high-power hybrid tracked vehicles, an innovative design method for a bilateral motor coupling mechanism based on the steering power reflux characteristic was proposed. Taking the dual-planet and triple-planet gear configurations as the research objects, a topological graph theoretical model incorporating kinematic and dynamics constraints was established. The power reflux characteristics under the straight-line driving and steering coordinated condition were transformed into the mathematical criteria for configuration parameters. Using topological synthesis and parametric analysis, six viable configurations were selected. Combined with the steering regenerative power transmission conditions, a multi-objective performance evaluation was conducted, and it was found that the dual-planet gear configuration attained the best in terms of coupling mechanism efficiency and steering power regenerative utilization rate. A electromechanical coupling dynamics simulation model for tracked vehicle was established, and tests on the vehicle's straight-line driving power performance and steering capability were conducted. The results showed that the optimal configuration could achieve a coordinated control with a yaw angle tracking accuracy of over 94% and a longitudinal speed error of less than 2.1%. The research results have provided a novel technical approach for the design of high-power-density hybrid tracked vehicle transmission system.



Key wordstracked vehicle      power coupling mechanism      mathematical features      configuration topology synthesis     
Received: 02 January 2025      Published: 01 September 2025
CLC:  TH 112  
Corresponding Authors: Xueliang LI     E-mail: xingqingkun@163.com;lixl@ysu.edu.cn
Cite this article:

Qingkun XING,Shuangyuan YANG,Datong QIN,Xueliang LI,Zengxiong PENG. Topology synthesis research of dual-input-dual-output coupling mechanism for tracked vehicle. Chinese Journal of Engineering Design, 2025, 32(4): 463-473.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.187     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I4/463


履带车辆双输入双输出耦合机构拓扑综合研究

为了降低大功率混合动力履带车辆传动系统驱动电机的功率需求,提出了基于转向功率回流特性的双侧电机耦合机构创新设计方法。以两行星排和三行星排构型为研究对象,建立了融合运动学与动力学约束的拓扑图论模型,将履带车辆直驶-转向协同工况下的功率回流特征转化为构型参数的数学判据;通过拓扑综合与参数化分析筛选出6种可行构型,结合转向再生功率传递条件进行多目标性能评估,发现两行星排构型在耦合机构效率和转向再生功率利用率方面表现最优;搭建了履带车辆机电耦合动力学仿真模型,进行了车辆直驶动力性和转向能力测试,结果表明:优选构型可实现偏航角跟踪精度大于94%、纵向速度误差小于2.1%的协同控制。研究结果为高功率密度混合动力履带车辆传动系统的设计提供了新的技术路径。


关键词: 履带车辆,  功率耦合机构,  数学特征,  构型拓扑综合 
Fig.1 Schematic diagram of electromechanical compound transmission
元件图论模型
Table 1 Graph theoretical representation of planetary gear components based on topological relationships
Fig.2 Dual-planetary gear topological configuration
Fig.3 Dual-planetary gear topological scheme
Fig.4 Transmission scheme for dual-planetary gear configuration 1​
Fig.5 Transmission scheme for dual-planetary gear configuration 2
Fig.6 Triple-planetary gear topological configuration
Fig.7 Triple-planetary gear topological scheme with fw=2
Fig.8 Triple-planetary gear topological scheme with fw=3
Fig.9 ​​Connection methods for triple-planetary gear with fw=2​
Fig.10 Transmission scheme corresponding to figure 9 (a)
Fig.11 Transmission scheme corresponding to figure 9 (d)​ and (e)
Fig.12 Connection methods for triple-planetary gear with fw=3
参数数值
车的质量/kg45 000
履带中心距/m2.71
履带接地长度/m4.472
滚动阻力系数0.05
最大转向阻力系数0.6
最大车速/(km/h)70
Table 2 Tracked vehicle model parameters
Fig.13 Impact of dual-planetary gear characteristic parameter on transmission performance
Fig.14 Impact of triple-planetary gear characteristic parameter on transmission performance
Fig.15 Power flow in transmission system during straight-line driving
Fig.16 Power flow in transmission system during pivot steering
Fig.17 Power flow in transmission system during unilateral steering
Fig.18 Power flow in transmission system during motor diving steering
Fig.19 Dynamics simulation model of tracked vehicle
类型参数数值
发动机参数最大功率/kW769.31
最大转矩/(Nm)1 750
最大转速/(r/min)4 200
惯性常数/(kg/m2)2
ISG参数最大功率/kW550
最大转矩/(Nm)700
最大转速/(r/min)20 000
惯性常数/(kg/m2)0.5
驱动电机参数最大功率/kW250
最大转矩/(Nm)3 500
最大转速/(r/min)2 500
惯性常数/(kg/m2)4
传动系统参数K12.478
K22.478
K32.135
K42
K52
K62
K72.135
K82.478
i11
i28.5
车辆参数空载质量/kg35 000
车轮半径/m0.318
摩擦阻力系数0.06
空气阻力系数0.9
迎风面积/m26
Table 3 Parameters of dynamics simulation model of tracked vehicle
Fig.20 Speed of vehicle under straight-line circular test condition
Fig.21 Output torque of drive motor under straight-line circular test condition
Fig.22 Yaw angle of vehicle under combined test condition of straight-line driving and turning
Fig.23 Longitudinal velocity of vehicle under combined test condition of straight-line driving and turning
Fig.24 Output torque of drive motor under combined test condition of straight-line driving and turning
[[1]]   陈兵, 马凯璇, 刘洋, 等. 双电机驱动履带车辆直驶稳定性分层控制策略[J]. 吉林大学学报(工学版), 2023, 53(10): 2752-2760.
CHEN B, MA K X, LIU Y, et al. Straight driving stability hierarchical control for dual-motor driving electric tracked vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(10): 2752-2760.
[[2]]   张杰, 袁东, 张朋, 等. 双侧电传动履带车辆模糊前馈-反馈转向控制[J]. 兵工学报, 2020, 41(8): 1688-1696.
ZHANG J, YUAN D, ZHANG P, et al. Steering control based on fuzzy feedforward and feedback for dual-motor electric drive tracked vehicle[J]. Acta Armamentarii, 2020, 41(8): 1688-1696.
[[3]]   魏巍, 闫清东, 刘城, 等. 装甲车辆设计[M]. 2版. 北京: 北京理工大学出版社, 2022.
WEI W, YAN Q D, LIU C, et al. Design of armored vehicles [M]. 2th ed. Beijing: Beijing Institute of Technology Press, 2022.
[[4]]   生辉, 项昌乐, 盖江涛, 等. 双侧电机耦合驱动履带车辆单侧电机故障模式下车辆安全控制[J]. 兵工学报, 2023, 44(11): 3498-3507.
SHENG H, XIANG C L, GAI J T, et al. Vehicle safety control of tracked vehicle driven by two-sided motor coupling under the failure mode of one-sided motor[J]. Acta Armamentarii, 2023, 44(11): 3498-3507.
[[5]]   ARNAUDOV K, KARAIVANOV D. Alternative method for analysis of complex compound planetary gear trains: essence and possibilities[C]//Power Transmissions: Proceedings of the 4th International Conference. Sinaia, Romania, June 20-23, 2012.
[[6]]   CHEN H, CHEN X A. A new methodology for multistage multispeed planetary transmission design based on geometry[J]. Journal of Mechanical Design, 2021, 143(11): 113401.
[[7]]   DENG T, TANG P, SU Z H, et al. Systematic design and optimization method of multimode hybrid electric vehicles based on equivalent tree graph[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13465-13474.
[[8]]   GENG M J, DING H F, KE T, et al. Topological graph representation and configuration synthesis for power-split hybrid transmissions of multi-planetary gear trains[J]. Journal of Mechanical Design, 2023, 145(12): 123401.
[[9]]   GAO M F, HU J B. Kinematic analysis of planetary gear trains based on topology[J]. Journal of Mechanical Design, 2018, 140(1): 012302.
[[10]]   高明飞, 胡纪滨, 李学良, 等. 履带车辆传动机构实现转向再生功率传递的构型特征研究[J]. 机械工程学报, 2019, 55(24): 137-144. doi:10.3901/jme.2019.24.137
GAO M F, HU J B, LI X L, et al. Study on the characteristics of configuration for the transmission of tracked vehicles to achieve the transfer of steering regenerative power[J]. Journal of Mechanical Engineering, 2019, 55(24): 137-144.
doi: 10.3901/jme.2019.24.137
[[11]]   YANG X D, SHAO Y M, WANG L M, et al. Configuration design of dual-input compound power-split mechanism for in-wheel motor-driven electrical vehicles based on an improved lever analogy method[J]. Journal of Mechanical Design, 2021, 143(10): 104501.
[[12]]   KIM H, KUM D. Comprehensive design methodology of input- and output-split hybrid electric vehicles: in search of optimal configuration[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2912-2923.
[[13]]   BARHOUMI T, KIM H, KUM D. Automatic generation of design space conversion maps and its application for the design of compound split hybrid powertrains[J]. Journal of Mechanical Design, 2018, 140(6): 063401.
[[14]]   SONG C, HWANG J, KUM D. Efficient design space exploration of multi-mode, two-planetary-gear, power-split hybrid electric powertrains via virtual levers[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3498-3509.
[[15]]   BARHOUMI T, KUM D. Designing a super-fast prius: systematic design of multispeed eCVT via virtual design space[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 263-276.
[[16]]   胡建军, 薛首志, 刘子睿. 一种履带车辆三行星排混合动力系统构型优化设计方案[J]. 中国公路学报, 2024, 37(7): 317-328.
HU J J, XUE S Z, LIU Z R. Optimization design for a hybrid electric powertrain system with three-planetary gear sets of tracked vehicles[J]. China Journal of Highway and Transport, 2024, 37(7): 317-328.
[[17]]   秦兆博. 混合动力履带车辆机电复合传动系统优化设计方法[D]. 北京: 清华大学, 2018: 46-47. doi:10.1115/1.4039687
QIN Z B. Optimal design methodology of the electro-mechanical transmission system for hybrid tracked vehicles [D]. Beijing: Tsinghua University, 2018: 46-47,
doi: 10.1115/1.4039687
[[18]]   LI R, FAN J J, HAN Z D, et al. Configuration design and control of hybrid tracked vehicle with three planetary gear sets[J]. Journal of Central South University, 2021, 28(7): 2105-2119.
[[19]]   PENG H, QIN D T, HU J J, et al. Synthesis and analysis method for powertrain configuration of single motor hybrid electric vehicle[J]. Mechanism and Machine Theory, 2020, 146: 103731.
[[20]]   韩政达, 毛明, 马晓枫, 等. 履带车辆机电复合传动耦合机构数学特征的研究[J]. 车辆与动力技术, 2012(1): 1-2, 12.
HAN Z D, MAO M, MA X F, et al. Research on mathematical characteristics of coupling mechanism for electro-mechanical transmission tracked vehicle[J]. Vehicle & Power Technology, 2012(1): 1-2, 12.
[1] LIU Zhe, TAO Feng-he, JIA Chang-zhi. Fatigue life prediction on drive shaft of tracked vehicle and structure optimization[J]. Chinese Journal of Engineering Design, 2015, 22(5): 431-437.