Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (4): 474-487    DOI: 10.3785/j.issn.1006-754X.2025.04.148
Robotic and Mechanism Design     
Design and analysis of planetary underactuated transformable tracked mobile mechanism
Na ZHANG1(),Zhiyuan XUN2,Yan'an YAO3()
1.School of Aeronautical Engineering, Beijing Polytechnic University, Beijing 100176, China
2.College of Information Science and Technology, Jinan University, Guangzhou 510632, China
3.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Download: HTML     PDF(5264KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To enhance the obstacle-crossing ability and environmental adaptability of conventional tracked mobile mechanisms, a planetary underactuated transformable tracked mobile mechanism is proposed, which is composed of a tracked driving wheel train and a planetary gear train, and has three motion modes: straight arm mode, orthogonal mode and transition mode. This tracked mobile mechanism adopts underactuated pattern, and realizes rapid obstacle-crossing response based on the least energy consumption principle. Firstly, the kinematics analysis was conducted on the tracked mobile mechanism. The relationships among center-of-mass height, ground contact area and track deformation under three motion modes were obtained, and its applicable environment was analyzed. Then, a dynamics theoretical model of the tracked mobile mechanism was established, and its maximum trench-crossing width and maximum protrusion-surmounting height were calculated. Meanwhile, the relationship between the deformation of the tracked mobile mechanism and the driving torque required for obstacle crossing was analyzed. Next, based on the dynamics simulation model of the tracked mobile mechanism, the obstacle-crossing simulation analysis was carried out, and the obstacle-crossing simulation process and the driving torque variation curve were obtained. Finally, a principal prototype of the tracked mobile mechanism was built and relevant experiments were carried out to verify the feasibility of its structural design. The results show that the designed planetary underactuated transformable tracked mobile mechanism can achieve the functions of rapid obstacle-crossing and adaptation to complex terrains by controlling its own deformation, significantly improving the obstacle-crossing ability and environmental adaptability of the tracked mobile mechanisms.



Key wordstracked mobile mechanism      underactuated      track deformation      least energy consumption principle     
Received: 11 June 2024      Published: 01 September 2025
CLC:  TH 112  
Corresponding Authors: Yan'an YAO     E-mail: znizn@sina.com;yayao@bjtu.edu.cn
Cite this article:

Na ZHANG,Zhiyuan XUN,Yan'an YAO. Design and analysis of planetary underactuated transformable tracked mobile mechanism. Chinese Journal of Engineering Design, 2025, 32(4): 474-487.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.148     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I4/474


行星式欠驱动可变形履带移动机构的设计与分析

为提高传统履带移动机构的越障能力和环境适应能力,提出了一种行星式欠驱动可变形履带移动机构,其由履带驱动轮系和行星轮系构成,具有直臂模式、正交模式和过渡模式三种运动模式。该履带移动机构采用欠驱动方式,根据最小耗能原理实现快速响应的越障功能。首先,对履带移动机构进行运动学分析,得到了3种运动模式下履带移动机构的质心高度、接地面积与履带变形的关系,并分析了其适用环境。然后,建立了履带移动机构的动力学理论模型并计算了其可跨越的最大沟槽宽度和可翻越的最大凸台高度,同时分析了履带移动机构变形与越障所需驱动扭矩之间的关系。接着,基于履带移动机构的动力学仿真模型开展越障仿真分析,得到了其越障仿真过程及驱动扭矩变化曲线。最后,搭建了履带移动机构的原理样机并开展了相关实验,验证了其结构设计的可行性。结果表明,所设计的行星式欠驱动可变形履带移动机构可通过控制自身变形实现快速越障和适应复杂地形的功能,显著提高了履带移动机构的越障能力和环境适应能力。


关键词: 履带移动机构,  欠驱动,  履带变形,  最小耗能原理 
Fig.1 Planetary tracked vehicle model
Fig.2 Configuration of planetary underactuated transformable tracked mobile mechanism
Fig.3 Schematic diagram of motion modes of tracked mobile mechanism
Fig.4 Structural diagram of transition mode tracked mobile mechanism
参数名称参数符号算例值
行星杆转角/(°)α0~90
行星杆长度/mmlBD112
履带轮直径/mmd47.75
履带周长/mml600
履带宽度/mmw80
履带AB段长度/mmlABα相关
履带BC段长度/mmlBCα相关
从动轮间距/mmlACα相关
连线BCAC的夹角/(°)β0~30
Table 1 Dimensional parameters and example values of tracked mobile mechanism
Fig.5 Structural diagram of straight-arm mode tracked mobile mechanism
Fig.6 Structural diagram of orthogonal mode tracked mobile mechanism
Fig.7 Relationship between center-of-mass height and ground contact area and planetary rod rotation angle for tracked mobile mechanism
Fig.8 Force diagram of straight-arm mode tracked mobile mechanism
Fig.9 Schematic of trench crossing process of straight-arm mode tracked mobile mechanism
Fig.10 Schematic of protrusion surmounting process of orthogonal mode tracked mobile mechanism
Fig.11 Schematic of trench crossing process of transition mode tracked mobile mechanism
Fig.12 Schematic of protrusion surmounting process of transition mode tracked mobile mechanism
参数名称参数符号算例值
电机输出扭矩/(N·m)M
履带移动机构翻转扭矩/(N·m)M'
单个履带移动机构承受的重力/NG75
车体前后轴距/mml1292
凸台高度/mmH
沟槽宽度/mmL
行星轮传动比i0.636
车体对履带移动机构的推力/NFj (j=1, 2, 3)
履带与地面和障碍物的摩擦系数μ1μ20.7
行星轮B处履带受地面的支持力/NNj
从动轮C处履带受地面的支持力/NNj
履带受障碍物的支持力/NNj
行星轮D处履带受障碍物的支持力/NNj ′″
履带受地面的摩擦力/NRj
履带受障碍物的摩擦力/NRj、Rj ′″
履带对地面的牵引力/NFf j
履带对障碍物的牵引力/NFfj ″、Ffj ′″
履带模块的转动惯量/(kg·m2)J
侧板夹角(侧板与地面夹角)/(°)λ
行星杆夹角(行星杆与水平面夹角)/(°)λ
Nj ′与水平面夹角/(°)φ
Nj ′″与水平面夹角/(°)τ
Table 2 Kinematic parameters and example values of tracked mobile mechanism
Fig.13 Force analysis of straight-arm mode tracked mobile mechanism during crossing trench
Fig.14 Relationship between required driving torque and side blate angle of straight-arm mode tracked mobile mechanism during crossing trench
Fig.15 Force analysis of orthogonal mode tracked mobile mechanism during the first stage of surmounting protrusion
Fig.16 Relationship between required driving torque and side blate angle of orthogonal mode tracked mobile mechanism during the first stage of surmounting protrusion
Fig.17 Force analysis of orthogonal mode tracked mobile mechanism during the second stage of surmounting protrusion
Fig.18 Relationship between required driving torque and planetary rod angle of orthogonal mode tracked mobile mechanism during the second stage of surmounting protrusion
Fig.19 Analysis diagram of transition mode tracked mobile mechanism during crossing trench
Fig.20 Analysis diagram of transition mode tracked mobile mechanism during surmounting protrusion
Fig.21 Relationship between obstacle-crossing width/height and planetary rod rotation angle of transition mode tracked mobile mechanism
Fig.22 Simulation process of straight-arm mode tracked mobile mechanism crossing trench
Fig.23 Driving torque of straight-arm mode tracked mobile mechanism during crossing trench
Fig.24 Simulation process of orthogonal mode tracked mobile mechanism surmounting protrusion
Fig.25 Driving torque of orthogonal mode tracked mobile mechanism during surmounting protrusion
Fig.26 Simulation process of transition mode tracked mobile mechanism crossing trench
Fig.27 Simulation process of transition mode tracked mobile mechanism surmounting protrusion
Fig.28 Driving torque of transition mode tracked mobile mechanism during crossing obstacles
Fig.29 Experiment of straight-arm mode tracked mobile mechanism crossing trench
Fig.30 Experiment of orthogonal mode tracked mobile mechanism surmounting protrusion
Fig.31 Experiment of transition mode tracked mobile mechanism surmounting protrusion
[[1]]   王兆魁, 孟庆良, 刘纯武. 智能人机交互在有人太空探索中的应用与展望[J]. 上海航天(中英文), 2024, 41(1): 1-10.
WANG Z K, MENG Q L, LIU C W. Application and prospect of intelligent human-robot interaction in manned space exploration[J]. Aerospace Shanghai(Chinese & English), 2024, 41(1): 1-10.
[[2]]   柏林. 浅谈防爆机器人的发展之路[J]. 中国安防, 2021(4): 86-88.
BAI L. An overview of the development path of explosion-proof robots[J]. China Security & Protection, 2021(4): 86-88.
[[3]]   李明龙, 杨文婧, 易晓东, 等. 面向灾难搜索救援场景的空地协同无人群体任务规划研究[J]. 机械工程学报, 2019, 55(11): 1-9. doi:10.3901/jme.2019.11.001
LI M L, YANG W J, YI X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue[J]. Journal of Mechanical Engineering, 2019, 55(11): 1-9.
doi: 10.3901/jme.2019.11.001
[[4]]   OH J W, JUNG J Y, KIM H W, et al. Gap size effect on the tribological characteristics of the roller for deep-sea mining robot[J]. Marine Georesources & Geotechnology, 2017, 35(1): 120-126.
[[5]]   王晓芸, 崔培, 陈晓. 轮式移动机器人文献综述[J]. 石家庄铁路职业技术学院学报, 2019, 18(2): 66-70.
WANG X Y, CUI P, CHEN X. Literature review of wheeled mobile robot[J]. Journal of Shijiazhuang Institute of Railway Technology, 2019, 18(2): 66-70.
[[6]]   郝呈晔. 新型变形轮腿式移动机器人的设计分析与实验研究[D]. 天津: 天津大学, 2021.
HAO C Y. Design, analysis and experimental study of a new-type transformable wheel-legged mobile robot[D]. Tianjin: Tianjin University, 2021.
[[7]]   孙海燕, 宗成国. 履带式移动机器人技术研究[J]. 电子质量, 2023(4): 10-12.
SUN H Y, ZONG C G. Research on tracked mobile robot technology[J]. Electronics Quality, 2023(4): 10-12.
[[8]]   田舒. 车身可变形两轮移动机构的设计与移动性能研究[D]. 北京: 北京交通大学, 2020.
TIAN S. Research on the design and moving performance of the deformable two-wheel moving mechanism of the car body[D]. Beijing: Beijing Jiaotong University, 2020.
[[9]]   马云. 地面机器人轮腿式移动机构与行走规划[D]. 哈尔滨: 哈尔滨工业大学, 2022.
MA Y. Wheel-legged mobile mechanism and walking planning of ground robot[D]. Harbin: Harbin Institute of Technology, 2022.
[[10]]   TADAKUMA K, TAKANE E, FUJITA M, et al. Planar omnidirectional crawler mobile mechanism: development of actual mechanical prototype and basic experiments[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 395-402.
[[11]]   TAKANE E, TADAKUMA K, WATANABE M, et al. Design and control method of a planar omnidirectional crawler mechanism[J]. Journal of Mechanical Design, 2022, 144(1): 013302.
[[12]]   高赵成. 可重构摆臂式履带机器人机构设计与对接技术研究[D]. 西安: 长安大学, 2023.
GAO Z C. Research on the design and docking technology of reconfigurable swing arm crawler robot[D]. Xi'an: Chang'an University, 2023.
[[13]]   崔玉宁, 罗自荣, 尚建忠, 等. 多运动态可重构轮履复合式机器人机械设计[J]. 哈尔滨工业大学学报, 2018, 50(7): 80-86.
CUI Y N, LUO Z R, SHANG J Z, et al. Machine design of a reconfigurable wheel-track hybrid mobile robot with multi-locomotion[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 80-86.
[[14]]   陈长征, 项宏伟, 杨孔硕, 等. 可变形履带机器人跨越台阶的动力学分析[J]. 沈阳工业大学学报, 2015, 37(2): 165-170.
CHEN C Z, XIANG H W, YANG K S, et al. Dynamic analysis for variable tracked robot in process of climbing steps[J]. Journal of Shenyang University of Technology, 2015, 37(2): 165-170.
[[15]]   姚燕安, 王硕, 成俊霖. 多模式自适应差动履带机器人[J]. 南京航空航天大学学报, 2017, 49(6): 757-765.
YAO Y A, WANG S, CHENG J L. Multimode adaptable differential tracked mobile robot[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(6): 757-765.
[[16]]   YAMAUCHI B M. PackBot: a versatile platform for military robotics[C]//Proceedings Volume 5422, Unmanned Ground Vehicle Technology VI. Orlando, Florida, Apr. 12-16, 2004.
[[17]]   MICHAUD F, LÉTOURNEAU D, ARSENAULT M, et al. AZIMUT, a leg-track-wheel robot[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, Oct. 27-31, 2003.
[[18]]   赵希庆, 尚建忠, 罗自荣, 等. 四连杆变形履带式机器人的越障性能分析[J]. 机械设计与研究, 2009, 25(6): 36-39.
ZHAO X Q, SHANG J Z, LUO Z R, et al. Analysis on the performance of obstacle surmounting for deformable tracked robot with four links[J]. Machine Design & Research, 2009, 25(6): 36-39.
[[19]]   李琳, 李超宇, 杨冰冰. 基于行星轮机构履带式煤矿侦察机器人越障性能分析[J]. 煤炭技术, 2018, 37(11): 289-292.
LI L, LI C Y, YANG B B. Crossing obstacles performance analysis of crawler coal mine reconnaissance robot based on planetary gear mechanism[J]. Coal Technology, 2018, 37(11): 289-292.
[[20]]   安治国, 周志鸿. 带辅助轮摆臂的履带式机器人越障能力分析[J]. 山东科技大学学报(自然科学版), 2024, 43(2): 121-132.
AN Z G, ZHOU Z H. Analysis of obstacle-crossing ability of swing arm tracked robot with auxiliary wheels[J]. Journal of Shandong University of Science and Technology (Natural Science), 2024, 43(2): 121-132.
[[21]]   孙海燕, 宗成国. 可变形履带式移动机器人设计分析[J]. 电子质量, 2023(5): 40-43.
SUN H Y, ZONG C G. Design and analysis of deformable tracked mobile robot[J]. Electronics Quality, 2023(5): 40-43.
[[22]]   张小俊, 张明路, 张建华, 等. 基于欠驱动原理的变形连杆履带机构设计[J]. 机械设计, 2018, 35(3): 43-48.
ZHANG X J, ZHANG M L, ZHANG J H, et al. Deformation and connecting rod mechanism design based on underactuation principle[J]. Journal of Machine Design, 2018, 35(3): 43-48.
[[23]]   陈广庆, 沈灵斌. 模块化欠驱动行星履带机器人设计[J]. 煤矿机械, 2020, 41(8): 1-3.
CHEN G Q, SHEN L B. Design of modular underactuated planetary crawler robot[J]. Coal Mine Machinery, 2020, 41(8): 1-3.
[[24]]   孙军权. 自适应行星轮式履带机器人的研究[D]. 北京: 北京交通大学, 2019.
SUN J Q. Research on adaptive planetary wheeled crawler robot[D]. Beijing: Beijing Jiaotong University, 2019.
[[25]]   周筑宝. 最小耗能原理及其应用: 材料的破坏理论、本构关系理论及变分原理[M]. 北京: 科学出版社, 2001.
ZHOU Z B. Principle of minimum energy consumption and its applications: material failure theory, constitutive relation theory and variational principle[M]. Beijing: Science Press, 2001.
[1] LU Qing-hua, HUANG Ming-xian, CHEN Wei-lin. Multi-mode parametric optimization design of planar damped underactuated gripper[J]. Chinese Journal of Engineering Design, 2018, 25(6): 690-696.