Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 81-90    DOI: 10.3785/j.issn.1006-754X.2024.03.307
Reliability and Quality Design     
Energy consumption analysis and anomaly identification of electric container reach stacker based on SHAP-LightGBM
Yongjun QIE1(),Jie REN1,Shuai SUN1,Dongcai ZHOU2,Fan ZHANG2
1.Sany Heavy Industry Co. , Ltd. , Beijing 102206, China
2.Sany Marine Heavy Industry Co. , Ltd. , Zhuhai 519050, China
Download: HTML     PDF(3595KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The container reach stacker (hereinafter referred to as reach stacker) plays a crucial role in practical port operations. With the increasing attention of society to energy and environmental issues, the electrification trend of reach stackers is becoming more and more significant, and the number of electric reach stackers on the market has been steadily rising year by year. The electric energy consumption performance directly affects endurance capacity, working efficiency and working cost of electric reach stackers, which is one of the important performance of electric reach stackers. Various factors such as driving behavior, operation conditions and equipment malfunctions will have diverse effects on the energy consumption of electric reach stackers. Therefor, by collecting the actual operating data of the customer side of electric reach stackers and based on the LightGBM (light gradient boosting machine) model, the energy consumption modeling for the driving and operational processes of electric reach stackers was conducted at the micro and macro levels, respectively. The SHAP (Shapley additive explanations) theory was used to quantitatively analyze the impact of different operation conditions and behaviors on the energy consumption of reach stackers, while simultaneously identifying energy consumption anomalies caused by equipment malfunctions. The results show that the energy consumption model based on SHAP-LightGBM can accurately predict and analyze the driving and operational energy consumption of reach stackers, which provides valuable input for the design and optimization of energy consumption strategy for electric reach stackers. Additionally, the energy consumption model establishes a theoretical energy consumption benchmark for the actual operational processes of electric reach stackers, effectively guiding driving behavior and identifying energy consumption anomalies caused by malfunctions.



Key wordselectric container reach stacker      energy consumption model      anomaly identification      LightGBM model      energy consumption optimization     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TH 21  
Cite this article:

Yongjun QIE,Jie REN,Shuai SUN,Dongcai ZHOU,Fan ZHANG. Energy consumption analysis and anomaly identification of electric container reach stacker based on SHAP-LightGBM. Chinese Journal of Engineering Design, 2024, 31(1): 81-90.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.307     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/81


基于SHAP-LightGBM的电动集装箱正面吊运起重机能耗分析和异常识别

集装箱正面吊运起重机(以下简称正面吊)在港口的实际作业中发挥着重要作用。随着社会对能源和环境问题的日益关注,正面吊的电动化趋势愈加显著,市场上电动正面吊的数量逐年增加。电耗性能直接影响电动正面吊的续航能力、作业效率和作业成本,是电动正面吊的重要性能之一。驾驶行为、作业工况、设备故障等因素均会对电动正面吊的能耗产生影响。为此,通过收集电动正面吊客户侧的实际运行数据,基于LightGBM(light gradient boosting machine,轻量级梯度提升机)模型,在微观和宏观两个层面分别对电动正面吊的行驶和作业过程进行能耗建模,并运用SHAP(Shapley additive explanations,沙普利加和解释)理论量化分析不同作业工况、作业行为对电动正面吊能耗的影响,同时识别设备故障所引起的能耗异常。结果表明,基于SHAP-LightGBM的能耗模型能够准确预测和分析电动正面吊的行驶和作业能耗,可为电动正面吊的设计、能耗策略优化提供有效的信息输入,同时可建立电动正面吊实际运行过程的理论能耗基准,有效指导驾驶行为和识别故障造成的能耗异常等。


关键词: 集装箱正面吊运起重机,  能耗模型,  异常识别,  LightGBM模型,  能耗优化 
Fig.1 A certain model of electric reach stacker
Fig.2 Schematic of operation process of electric reach stacker grabbing container
Fig.3 Overall framework of energy consumption modeling and analysis method for electric reach stacker
参数类别参数名称单位
行驶和作业参数时间s
车速km/h
吊载质量t
臂架长度m
臂架角度(o)
吊具侧移速度m/s
吊具旋转速度(o)/s
吊具伸缩速度m/s
输出功率参数行驶电机转速r/min
行驶电机扭矩Nm
作业电机转速r/min
作业电机扭矩Nm
Table 1 Actual operational parameters required for energy consumption modeling of electric reach stacker
Fig.4 Comparison of vehicle velocity and acceleration signals before and after filtering and smoothing processing
Fig.5 Division schematic of suspension box circulation section
能耗模型

MAE/

(kW·h)

MAPE/%R2
微观行驶能耗模型0.15150.92
宏观行驶能耗模型0.21190.84
微观作业能耗模型0.14140.73
宏观作业能耗模型0.17190.65
Table 2 Comparison of prediction accuracy of four energy consumption models
Fig.6 Comparison between predicted total energy consumption of four energy consumption models and actual total energy consumption
Fig.7 Contribution of various influence factors in macro energy consumption model to total energy consumption
Fig.8 Contribution of various influence factors in micro energy consumption model to instantaneous energy consumption
Fig.9 Analysis of interaction effect between instantaneous vehicle velocity and instantaneous acceleration based on micro driving energy consumption model
Fig.10 Contribution of various influence factors to total driving energy consumption during a suspension box circulation section
Fig.11 Contribution of various influence factors to total operational energy consumption during a suspension box circulation section
Fig.12 Comparison and error between actual total driving energy consumption and theoretical total driving energy consumption
[1]   李晓易,谭晓雨,吴睿,等.交通运输领域碳达峰、碳中和路径研究[J].中国工程科学,2021,23(6):15-21. doi:10.15302/J-SSCAE-2021.06.008
LI X Y, TAN X Y, WU R, et al. Paths for carbon peak and carbon neutrality in transport sector in China[J]. Engineering Science, 2021, 23(6): 15-21.
doi: 10.15302/J-SSCAE-2021.06.008
[2]   黄伟,张桂连,周登辉,等.基于能量流分析的纯电动汽车电耗优化研究[J].汽车工程,2021,43(2):171-180. doi:10.19562/j.chinasae.qcgc.2021.02.003
HUANG W, ZHANG G L, ZHOU D H, et al. Research on optimization of power consumption of pure electric vehicle based on energy flow analysis[J]. Automotive Engineering, 2021, 43(2): 171-180.
doi: 10.19562/j.chinasae.qcgc.2021.02.003
[3]   张树培,黄璇,荆哲铖.电动汽车再生制动系统回收特性与能量流分析[J].重庆交通大学学报(自然科学版),2015,34(1):157-161. doi:10.3969/j.issn.1674-0696.2015.01.34
ZHANG S P, HUANG X, JING Z C. Recovery characteristics and energy flow of electric vehicle regenerative braking system analysis[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(1): 157-161.
doi: 10.3969/j.issn.1674-0696.2015.01.34
[4]   RAHMAT A, FAHMI M, FANG L H, et al. The performance of the optimisation and regenerative braking systems by using PI controlling technique for electric vehicle (EV)[J]. Journal of Physics: Conference Series, 2022, 2312(1): 012022.
[5]   王永鼎,裴开雅.纯电动汽车制动能量回收策略优化研究[J].机械科学与技术,2022,41(9):1436-1441.
WANG Y D, PEI K Y. Research on optimization of braking energy recovery strategy for pure electric vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1436-1441.
[6]   王震坡,孙逢春.电动汽车能耗分配及影响因素分析[J].北京理工大学学报,2004,24(4):306-310. doi:10.3969/j.issn.1001-0645.2004.04.008
WANG Z P, SUN F C. Analysis of energy consumption distribution and factors of influence in electric vehicles[J]. Transactions of Beijing Institute of Technology, 2004, 24(4): 306-310.
doi: 10.3969/j.issn.1001-0645.2004.04.008
[7]   张微,徐金波,王旭,等.基于WLTC工况的电动汽车能量流测试与分析[J].汽车技术,2019(11):6-9.
ZHANG W, XU J B, WANG X, et al. Energy flow test and analysis of electric vehicle based on WLTC mode[J]. Automobile Technology, 2019(11): 6-9.
[8]   AL-WREIKAT Y, SERRANO C, SODRE J R. Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle[J]. Energy, 2022, 238(Part C): 122028.
[9]   YI Z G, BAUER P H. Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis[J]. IET Electrical Systems in Transportation, 2017, 7(1): 3-13.
[10]   赵佳伟,胡明辉,荣正璧,等.驾驶风格对纯电动汽车能耗的影响[J].重庆大学学报,2021,44(12):103-115. doi:10.11835/j.issn.1000-582X.2020.025
ZHAO J W, HU M H, RONG Z B, et al. Effect of driving style on the energy consumption of an electric vehicle[J]. Journal of Chongqing University, 2021, 44(12): 103-115.
doi: 10.11835/j.issn.1000-582X.2020.025
[11]   BINGHAM C, WALSH C, CARROLL S. Impact of driving characteristics on electric vehicle energy consumption and range[J]. IET Intelligent Transport Systems, 2012, 6(1): 29-35.
[12]   沈涛,李飞,苏天晨,等.传统汽车整车能量流的仿真分析[C]//2017中国汽车工程学会年会论文集.北京:机械工业出版社,2017:1489-1493.
SHEN T, LI F, SU T C, et al. Simulation analysis of energy flow of traditional vehicle[C]//2017 Proceedings of the Annual Meeting of the China Society of Automotive Engineering. Beijing: China Machine Press, 2017: 1489-1493.
[13]   乐智,盛俏,陈龙,等.整车能量流分析在燃油经济性开发中的应用[C]//2015中国汽车工程学会年会论文集.北京:机械工业出版社,2017:2047-2049.
YUE Z, SHENG Q, CHEN L, et al. Application of energy flow down analysis in development of fuel economy [C]//2015 Proceedings of the Annual Meeting of the China Society of Automotive Engineering. Beijing: China Machine Press, 2017: 2047-2049.
[14]   XU L F, LI J Q, OUYANG M. Energy flow modeling and realtime control design basing on mean values for maximizing driving mileage of a fuel cell bus[J]. International Journal of Hydrogen Energy, 2015, 40: 15052-15066.
[15]   AHN K, RAKHA H. The effects of route choice decisions on vehicle energy consumption and emissions[J]. Transportation Research Part D: Transport and Environment, 2008, 13(3): 151-167.
[16]   KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 3149-3157.
[17]   LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 4768-4777.
[18]   LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67.
[19]   LUNDBERG S M, NAIR B, VAVILALA M S, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery[J]. Nature Biomedical Engineering, 2018, 2(10): 749-760.
[20]   SHAPLEY L S. A value for n-person games[M]// Contributions to the theory of games (AM-28), Volume Ⅱ. Princeton: Princeton University Press, 1953: 307-318.
[21]   赵敬玉,徐铖,李晓宇.基于实际行驶数据的电动汽车能耗分析与预测[J].机械工程学报,2023,59(10):263-274.
ZHAO J Y, XU C, LI X Y. Electric vehicle energy consumption analysis and prediction based on real-world driving data[J]. Journal of Mechanical Engineering, 2023, 59(10): 263-274.
[22]   邹萌,姚恩建,潘龙,等.基于微观能耗模型的电动汽车生态驾驶行为研究[EB/OL].(2016-09-27)[2023-10-20]..
ZOU M, YAO E J, PAN L, et al. Study on eco-driving behavior of electric vehicles based on microscopic consumption models[EB/OL]. (2016-09-27) [2023-10-20]. .
[1] Hongyue CHEN,Minghang CAI,Xinwei YANG,Zhonghuan DAI. Structure and dynamics analysis of special manipulator frame for replacing wire rope of electric shovel[J]. Chinese Journal of Engineering Design, 2023, 30(5): 590-600.
[2] Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chinese Journal of Engineering Design, 2023, 30(3): 380-389.
[3] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[4] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[5] PAN Yi-ming, YU Lan-feng, HAN Lu-nan, SHAN Yi-feng. Finite element analysis of telescopic head-bracket contact of mobile car machine[J]. Chinese Journal of Engineering Design, 2019, 26(3): 315-320.