Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 212-219    DOI: 10.3785/j.issn.1006-754X.2022.00.017
Modeling, Simulation, Analysis and Decision     
Dynamic characteristic analysis of synchronous belt transmission elevator for automatic production line
Xue-jun WANG(),Jiang-hua PU,Ming-fang CHEN()
Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China
Download: HTML     PDF(2420KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Traditional elevators mostly adopt chain transmission and steel wire rope transmission, which has the problem of large space occupation, poor operation stability, high noise and large amount of maintenance.Based on the functional requirements of display automation production line and according to its process requirements, a multi-input and multi-output elevator with reversing load transfer device and transverse load transfer function driven by synchronous belt was designed.On this basis, the rigid-flexible coupling model of the elevator was established based on multi-body dynamics theory. ADAMS (automatic dynamic analysis of mechanical systems) software was used to simulate and analyze the dynamic characteristic of the elevator, and study the operation stability of the synchronous belt transmission system and the pallet.The results showed that the designed synchronous belt transmission mechanism could meet the functional requirements of multi-input and multi-output of the display automatic production line, and the running stability was better;the running speed error of the pallet was less than 1%, the cumulative position error was less than 7 mm, and the higher positioning accuracy could be obtained; the guiding device couldoffset the load torque, so that the transmission was stable, and ensure the stability of the counterweight and the pallet in the lifting process. The research results provide a certain theoretical reference for the good application of synchronous belt transmission elevator in automatic production line.



Key wordselevator      synchronous belt drive      rigid-flexible coupling model      dynamic characteristic     
Received: 31 January 2020      Published: 06 May 2022
CLC:  TH 11  
Corresponding Authors: Ming-fang CHEN     E-mail: km_wxj@kust.edu.cn;mfchen111@sina.com
Cite this article:

Xue-jun WANG,Jiang-hua PU,Ming-fang CHEN. Dynamic characteristic analysis of synchronous belt transmission elevator for automatic production line. Chin J Eng Design, 2022, 29(2): 212-219.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.017     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/212


自动化生产线用同步带传动升降机的动态特性分析

传统升降机多采用链传动和钢丝绳传动的方式,存在占用空间大、运行平稳性差、噪声大和维修保养量大等问题。以显示器自动化生产线的功能需求为背景,根据其工艺要求,设计了一种采用同步带传动的具有换向移载装置和横向移载功能的多进多出型升降机。在此基础上,基于多体动力学理论构建了升降机刚柔耦合模型,利用ADAMS (automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)软件对升降机的动态特性进行仿真分析,对同步带传动系统和载货台的运行稳定性进行研究。结果表明:所设计的同步带传动机构能够满足显示器自动化生产线多进多出的功能需求,且运行平稳性较好;载货台的位置累积误差小于7 mm,运行速度误差小于1%,可以获得较高的定位精度;导向装置在传动过程中能抵消负载力矩,使传动平稳,保证了配重和载货台在升降过程中的稳定性。研究结果为同步带传动升降机在自动化生产线中的良好应用提供了一定的理论参考依据。


关键词: 升降机,  同步带传动,  刚柔耦合模型,  动态特性 
Fig.1 Schematic of display transportation
Fig.2 Elevator structure
Fig.3 Schematic of layout of display automation production line
Fig.4 Nonlinear spring damping contact collision model
Fig.5 Schematic of contact between rigid belt element and pulley
Fig.6 Rigid-flexible coupling virtual prototype model of elevator
Fig.7 Rotate speed of driving wheel and driven wheel of synchronous belt transmission system
Fig.8 Dynamic characteristic curve of synchronous belt transmission system
Fig.9 Dynamic characteristic curve of pallet
Fig.10 Contact force curve of guide wheel
[1]   李程辉.链传动与带传动相关问题讨论[J].科技致富向导,2013(26):168-168.
LI Cheng-hui. Discussion on chain drive and belt drive[J]. Guide to getting rich through science and technology, 2013(26): 168-168.
[2]   王建国.精密钢丝绳传动的应用探讨[J].科学技术创新,2014(16):23-23. doi:10.3969/j.issn.1673-1328.2014.16.052
WANG Jian-guo. Discussion on the application of precision wire rope transmission[J]. Scientific and Technological Innovation, 2014(16): 23-23.
doi: 10.3969/j.issn.1673-1328.2014.16.052
[3]   李梅,杨平,赵春娟,等.螺旋升降机蜗杆传动机构啮合力的仿真研究[J].组合机床与自动化加工技术,2016(2):17-19.
LI Mei, YANG Ping, ZHAO Chun-juan, et al. Research on meshing force simulation of worm transmission mechanism for screw jack mechanism[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(2): 17-19.
[4]   邹杰,刘晓婷,杜二超,等.升降机齿轮齿条接触的联合仿真分析[J].机械传动,2013,37(10):76-78.
ZOU Jie, LIU Xiao-ting, DU Er-chao, et al. Joint simulation analysis of the rack and pinion contact of lift[J]. Journal of Mechanical Transmission, 2013, 37(10): 76-78.
[5]   王晓辉,胡志勇.基于ADAMS的链传动机构动力特性分析[J].机械工程与自动化,2018(4):77-78,80. doi:10.3969/j.issn.1672-6413.2018.04.031
WANG Xiao-hui, HU Zhi-yong. Analysis of dynamic characteristics of chain drive mechanism based on ADAMS[J]. Mechanical Engineering and Automation, 2018(4): 77-78, 80.
doi: 10.3969/j.issn.1672-6413.2018.04.031
[6]   刘树青,王兴松,汪木兰.剪式机构的刚柔耦合动力学建模与仿真[J].机械科学与技术,2011,30(11):1881-1886.
LIU Shu-qing, WANG Xing-song, WANG Mu-lan. Modeling and simulation for rigid and flexible coupling dynamics of scissor structure[J]. Mechanical Science and Technology, 2011, 30(11): 1881-1886.
[7]   刘相权,左云波.快速出药系统升降平台动力学特性分析[J].中国机械工程,2013,24(16):2179-2184. doi:10.3969/j.issn.1004-132X.2013.16.010
LIU Xiang-quan, ZUO Yun-bo. Dynamics characteristics analysis of lifting platform for a top-speed dispensing system[J]. China Mechanical Engineering, 2013, 24(16): 2179-2184.
doi: 10.3969/j.issn.1004-132X.2013.16.010
[8]   李小民,郭伟科,陈启愉,等.立体车库垂直升降系统结构仿真分析与优化[J].机械研究与应用,2017,30(3): 112-114,121.
LI Xiao-min, GUO Wei-ke, CHEN Qi-yu, et al. Analysis and optimization on the structure of vertical lifting garage[J]. Mechanical Research & Application, 2017, 30(3): 112-114, 121.
[9]   方亚辉,高云国.大跨距同步带直线驱动机构运动特性分析[J].现代制造工程,2018(11):107-112.
FANG Ya-hui, GAO Yun-guo. Motion characteristic analysis of long-span linear motion mechanism driven by synchronous belt[J]. Modern Manufacturing Engineering, 2018(11): 107-112.
[10]   KAGOTANI M, UEDA H. Influence of installation tension on transmission error due to resonance in a synchronous belt[J]. Journal of Mechanical Design, 2015, 137(8): V002T07A006. doi:10.1115/1.4030204
doi: 10.1115/1.4030204
[11]   SHI Y C, LI Z G, LIU Q L. Automotive synchronous belt transmission stationarity simulation analysis based on the rigid-flexible coupling[J]. Applied Mechanics and Materials, 2014, 3365: 342-344. doi:10.4028/www.scientific.net/amm.602-605.342
doi: 10.4028/www.scientific.net/amm.602-605.342
[12]   焦栋.高速同步带间歇传送装置的设计及其动态性能研究[D].西安:陕西科技大学,2015:50-93. doi:10.20291/2311-164x-2016-2-6-9
JIAO Dong. Design and exploration of dynamic characteristics of intermittent drive device for high-speed synchronous belt[D]. Xi'an: Shaanxi University of Science and Technology, 2015: 50-93.
doi: 10.20291/2311-164x-2016-2-6-9
[13]   袁志权.灌装机同步带动力特性分析及结构优化[D].武汉:武汉理工大学,2010:21-52.
YUAN Zhi-quan. Dynamic characteristic analysis and structure optimization of synchronous belt of filling machine[D]. Wuhan: Wuhan University of Technology, 2010: 21-52.
[14]   王留柱.温室钵苗移栽机机构设计与移栽动平台研究[D]. 镇江:江苏大学,2016:37-55.
WANG Liu-zhu. Mechanism design and transplanting moving platform research of greenhouse seedling transplanting machine[D]. Zhenjiang: Jiangsu University, 2016: 37-55.
[15]   胡建平,张晨迪,王留柱,等.全自动温室钵苗移栽机设计与试验[J].农业机械学报,2016(S1):149-154.
HU Jian-ping, ZHANG Chen-di, WANG Liu-zhu, et al. Design and experiment on automatic greenhouse seedling transplanting machine[J]. Journal of Agricultural Machinery, 2016(S1): 149-154.
[16]   李岩.方坯端面变速喷涂标识设备的设计与研究[D].天津:天津科技大学,2018:52-75.
LI Yan. Design and research of special billets marking device with variable spraying for end face of square billet[D]. Tianjin: Tianjin University of Science and Technology, 2018: 52-75.
[17]   周舟,王志明,蔡正龙,等.摇杆滑块及同步带送料机构仿真分析[J].计量与测试技术,2017,44(12):76-79.
ZHOU Zhou, WANG Zhi-ming, CAI Zheng-long, et al. Simulation analysis of rocker slider and synchronous belt feeding mechanism[J]. Measurement and Test Technology, 2017, 44 (12): 76-79.
[18]   张凯凯.同步带传动的动态性能研究[D].西安:陕西科技大学,2012:25-28.
ZHANG Kai-kai. Study on the dynamic performance of synchronous belt drive[D]. Xi'an: Shaanxi University of Science and Technology, 2012: 25-28.
[19]   WU Y, ZHOU X. Modeling and simulation research of banded wedge and synchronous V belt drive[J]. Advanced Materials Research, 2013, 677: 219-224. doi:10.4028/www.scientific.net/amr.677.219
doi: 10.4028/www.scientific.net/amr.677.219
[20]   DUAN Y C, LI X, ZHANG W W, et al. Impact dynamics of flexible multibody system based on continuous contact force method[J]. Applied Mechanics & Materials, 2015, 3843: 1628-1634. doi:10.4028/www.scientific.net/amm.744-746.1628
doi: 10.4028/www.scientific.net/amm.744-746.1628
[21]   杨明亮,徐格宁.基于约束刚柔耦合系统的叉车振动研究[J].机械工程学报,2011,47(20):93-98. doi:10.3901/jme.2011.20.089
YANG Ming-liang, XU Ge-ning. Vibration study of fork-lift truck based on the constraint-rigid-flexible coupling system[J]. Journal of Mechanical Engineering, 2011, 47(20): 93-98.
doi: 10.3901/jme.2011.20.089
[22]   董富祥,洪嘉振.多体系统动力学碰撞问题研究综述[J]. 力学进展,2009,39(3):354-359. doi:10.3321/j.issn:1000-0992.2009.03.007
DONG Fu-xiang, HONG Jia-zhen. Review of impact problem for dynamics of multibody system[J]. Progress in Mechanics, 2009, 39(3): 354-359
doi: 10.3321/j.issn:1000-0992.2009.03.007
[1] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chin J Eng Design, 2023, 30(1): 82-92.
[2] Long-long ZHANG,Zheng-ming XIAO,Jiang LIU,Wei-biao LIU. Dynamic characteristics analysis of counter-rotating cylindrical roller bearing[J]. Chin J Eng Design, 2023, 30(1): 93-101.
[3] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chin J Eng Design, 2022, 29(4): 438-445.
[4] Zhu-xin TIAN,Ming-hui GUO,Hai-yin CAO. Study on influencing factors of dynamic characteristics of annular recess hydrostatic thrust bearing[J]. Chin J Eng Design, 2022, 29(4): 456-464.
[5] ZHANG Pu, WANG Jun-feng, GAO Yi-cong, ZHANG Xue-jian. Innovative design of box elevator epidemic prevention function integrating AD and TRIZ[J]. Chin J Eng Design, 2021, 28(3): 305-311.
[6] JIA Du-ping, MO Li, MAO Liang-jie, ZENG Song. Experimental research on vortex-induced vibration of deepwater riser-test string system[J]. Chin J Eng Design, 2021, 28(2): 170-178.
[7] ZHANG Chao, HAN Xiao-ming, LI Qiang, LI Chi. Design and dynamic characteristics analysis of permanent magnet eddy current shock absorber under impact load[J]. Chin J Eng Design, 2020, 27(6): 786-794.
[8] CHEN Ji-wen, WANG Lei, LI Xin, GONG Yu-bin, CHANG Guo-lei, LI Kai-kai. Innovative design of annular transverse circulation elevator based on RGV[J]. Chin J Eng Design, 2020, 27(3): 317-325.
[9] JIANG Xiao-fei, ZHANG Guan-wei, HU Yong-xiu, ZHANG Da-wei. Evaluation method of dynamic characteristics of whole NC machine tool[J]. Chin J Eng Design, 2020, 27(2): 135-145.
[10] LUO Ru-nan, NIU Wen-tie, WANG Chen-sheng. Analysis of influencing factors of dynamic error of feed system based on electromechanical-rigid-flexible coupling characteristics[J]. Chin J Eng Design, 2019, 26(5): 561-569.
[11] WU Zhong-yi, CHEN Jia-dui, WANG Zi-qin. Research on a hydraulic continuous variable compression ratio technique[J]. Chin J Eng Design, 2018, 25(2): 142-150.
[12] LIU Wen, ZHANG Jin-hong, LIN Teng-jiao, YANG Yun, CAI Yun-long. Prediction and research on influencing factors of structural noise of bridge crane with three-point support[J]. Chin J Eng Design, 2017, 24(5): 580-587,594.
[13] WU Yao, CAO Ju-jiang, LIU Yan-song, YAN Wei-liang. Research of the rigid-flexible coupling dynamic balancing on crank-group driving mechanism[J]. Chin J Eng Design, 2016, 23(5): 468-480.
[14] ZHANG Yu, CAI Xin, GAO Qiang, DING Wen-xiang. Research summary of wind turbine tower structure[J]. Chin J Eng Design, 2016, 23(2): 108-115,123.
[15] LIU Yuan-yuan, ZHANG Qing, QIN Xian-rong, SUN Yuan-tao. Dynamic characteristic analysis of container crane lifting system with the zigzag-shaped groove drum[J]. Chin J Eng Design, 2015, 22(5): 359-364.