Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (6): 702-709    DOI: 10.3785/j.issn.1006-754X.2017.06.014
整机和系统设计     
新型汽车电子机械制动系统建模仿真与实验研究
傅云峰1, 王维锐2, 葛正2
1. 金华职业技术学院 机电工程学院, 浙江 金华 321000;
2. 浙江大学 机械工程学院, 浙江 杭州 310027
Simulation and experimental research of a new automotive electromechanical brake system
FU Yun-feng1, WANG Wei-rui2, GE Zheng2
1. Mechanical and Electrical Engineering College, Jinhua Polytechnic, Jinhua 321000, China;
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3687 KB)   HTML
摘要:

线控制动技术是未来汽车制动技术的发展方向,引起了国内外汽车制造商的广泛关注。针对现有汽车电子机械制动系统缺少GB12676-2014中规定的制动磨损补偿装置,创新设计了一种具有间隙自动调节功能的新型汽车电子机械制动系统。在MATLAB/Simulink中建立汽车电子机械制动系统的驱动电机、电机摩擦、蜗轮蜗杆、滚珠丝杠、负载的数学模型。搭建制动系统实验台,测试分析了系统在阶跃、三角波、方波、正弦信号下仿真与实验的制动性能区别,测试对比了系统在有/无间隙自动调节功能下的制动性能。实验结果显示,系统启动电流具有"尖峰"特性,制动正压力反应灵敏,可以满足制动要求。通过参数关系分析,得出制动正压力与堵转电流成线性关系,制动正压力与丝杠位移(电机转角)满足三次多项式的参数关系。仿真与实验结果验证了所建数学模型的正确性,所得到的参数关系可以为减少力传感器等装置的制动系统提供理论依据。所设计的间隙自动调节功能可以有效保障每次制动时制动间隙和制动响应时间的一致性,进一步提高制动系统的安全性能。

关键词: 汽车电子机械制动系统制动性能参数关系间隙自动调节实验验证    
Abstract:

Brake-by-wire technology is a development direction of the future automotive brake technology which has aroused extensive concern of domestic and foreign car manufacturers. Since the existing automotive electromechanical brake (EMB) was lack of wear compensation device which was specified in the national standard, GB12676-2014, an innovative EMB with gap automatic adjustment function was designed. The mathematical models of drive motor, motor friction, worm and gear, ball screw and loading were established by MATLAB/Simulink. By building the EMB bench, the braking performance differences between simulation and experiment were tested and analyzed under the signal of step, triangle wave, square wave and sinusoidal wave. The braking performances of EMB with the gap automatic adjustment function or nor were also tested and analyzed. The experimental results showed that the start-current of the EMB system had a "peak" characteristic and the clamping force was sensitive, which could meet the braking requirements. According to the experimental data, the parameter relations were concluded:the clamping force was linearly related to the locked-rotor current, and the characteristics of cubic polynomial were met by the relationship between clamping force and screw displacement. The correctness of the mathematical model was verified by the simulation and experimental results. A theoretical basis for reducing the force sensor and other devices could be provided by the conclusion of parameters relational characteristics. The experimental outcome indicates that the gap automatic adjustment function of the new EMB can guarantee that the brake gap and the response time are consistent at each time, which can further improve the safety of brakes.

Key words: automotive electromechanical brake system    braking performance    parameter relation    gap automatic adjustment    experimental verification
收稿日期: 2016-08-22 出版日期: 2017-12-28
CLC:  U463.5  
基金资助:

浙江省自然科学基金资助项目(LY13E050003);浙江省教育厅科研项目(Y201635253);浙江省高校访问工程师校企合作项目(FG2016022)

作者简介: 傅云峰(1988-),男,浙江金华人,讲师,硕士,从事汽车制动技术研究,E-mail:fuyunfeng@zju.edu.cn,http://orcid.org/0000-0001-9111-2435
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
傅云峰
王维锐
葛正

引用本文:

傅云峰, 王维锐, 葛正. 新型汽车电子机械制动系统建模仿真与实验研究[J]. 工程设计学报, 2017, 24(6): 702-709.

FU Yun-feng, WANG Wei-rui, GE Zheng. Simulation and experimental research of a new automotive electromechanical brake system[J]. Chinese Journal of Engineering Design, 2017, 24(6): 702-709.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.06.014        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I6/702

[1] MICHELS K. Trends in the development of drive components for electric and hybrid vehicles[J]. ATZ Elektronik Worldwide, 2015, 10(4):4-7.
[2] YU L Y, ZHAO W Z, YI J B. Modeling and analysis of brake by wire system in electric vehicle[J]. Applied Mechanics and Materials, 2013, 249-250:622-627.
[3] 李顶根,张绿原,何保华.基于滑移率的汽车电子机械制动系统的模糊控制[J].机械工程学报,2012,48(20):121-126. LI Ding-gen, ZHANG Lü-yuan, HE Bao-hua. Fuzzy control based on vehicle slip-ratio for electro-mechanical braking systems[J]. Journal of Mechanical Engineering, 2012, 48(20):121-126.
[4] LEE J. A study on braking system using fully electric brake system[C]//2014 IEEE International Conference on Industrial Technology (ICIT). Busan, Feb. 26-Mar. 1, 2014.
[5] JEON K, PARK J I, CHOI S J, et al. Electronic brake safety index for evaluating fail-safe control of brake-by-wire systems for improvement in the straight braking stability[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2014, 228(8):873-893.
[6] LEE Y O, JANG M, LEE W, et al. Novel clamping force control for electric parking brake systems[J]. Mechatronics, 2011, 21(7):1156-1162.
[7] AHN J K, JUNG K H, KIM D H, et al. Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake[J]. International Journal of Automotive Technology, 2009, 10(2):229-234.
[8] JEON K, HWANG H, CHOI S, et al. Development of a fail-safe control strategy based on evaluation scenarios for an FCEV electronic brake system[J]. International Journal of Automotive Technology, 2012, 13(7):1067-1075.
[9] SARIC S, BAB-HADIASHAR A, HOSEINNEZHAD R. Clamp-force estimation for a brake-by-wire system:a sensor-fusion approach[J]. IEEE Transactions on Vehicular Technology, 2008, 57(2):778-786.
[10] 张露,王国业,张延立,等.电动汽车再生摩擦集成制动系统ABS控制性能研究[J].农业机械学报,2015,46(10):350-356. ZHANG Lu, WANG Guo-ye, ZHANG Yan-li, et al. ABS control performance of integrated brake system with regenerative friction brake in electric vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10):350-356.
[11] HAGGAG S A, ABIDOU D. An approach to vehicle brake-by-wire optimal control tracking strategy[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2013, 6(1):154-162.
[12] GMBH R B. Electromechanical braking device for a braking system and braking system for a vehicle:US20160107628A1[P]. 2016-04-21.
[13] GOMBERT B, GUTTENBERG P. The electronic wedge brake[J]. ATZ Worldwide, 2006, 108(11):2-5.
[14] JO C, HWANG S, KIM H. Clamping-force control for electromechanical brake[J]. IEEE Transactions on Vehicular Technology, 2010, 59(7):3205-3212.
[15] 刘地,刘兆英,金约夫,等.商用汽车和挂车制动系统技术要求及试验方法:GB12676-2014[S].北京:中国标准出版社,2014:11-18. LIU Di, LIU Zhao-ying, JIN Yue-fu, et al. Technical requirements and testing methods for commercial vehicle and trailer braking system:GB12676-2014[S]. Beijing:Standards Press of China, 2014:11-18.
[16] GONG X X, CHANG S Q, JIANG L C, et al. A new brake-by-wire system based on direct-drive electro-hydraulic brake unit[J]. Applied Mechanics and Materials, 2014, 627:231-235.
[17] FARRIS R J, GOLDFARB M. Design of a multidisc electromechanical brake[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6):985-993.
[18] 王维锐,石浩然,葛正,等.汽车线控制动器:2012103407932[P].2014-07-09. WANG Wei-rui, SHI Hao-ran, GE Zheng, et al.Automotive brake by wire actuator:2012103407932[P]. 2014-07-09.
[19] 唐任远. 现代永磁电机理论与设计[M]. 北京:机械工业出版社, 2000:93-98. TANG Ren-yuan. Modern permanent magnet motor-theory and design[M]. Beijing:China Machine Press, 2000:93-98.
[1] 赵富强,杜特,常宝玉,牛志刚. 肢腿履带足机构抬腿工况动力学分析与实验研究[J]. 工程设计学报, 2022, 29(4): 474-483.
[2] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[3] 白杨溪, 陈洪月, 陈洪岩, 王鑫, 李建刚. 基于滚筒载荷的采煤机滑靴振动分析及实验验证[J]. 工程设计学报, 2021, 28(3): 358-366.