Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (5): 497-500,512    DOI: 10.3785/j.issn.1006-754X.2016.05.013
整机和系统设计     
FDM型3D打印机的高精度进料系统研究
司国斌, 王春霞, 靳孝峰
焦作大学 机电工程学院, 河南 焦作 454003
Research for high-precision feed system based on 3D printer of FDM
SI Guo-bin, WANG Chun-xia, JIN Xiao-feng
College of Mechanical and Electrical Engineering, Jiaozuo University, Jiaozuo 454003, China
 全文: PDF(945 KB)   HTML
摘要:

为了提高打印成型件的精度和质量,对FDM型3D打印机进料系统及其具体实现方法进行了改进.系统采用功率管IRF530N、加热管和PWM组成加热模块,采用铂热电阻Pt100、差动放大电路和PID算法组成温度测控模块.既简化了标度变化的计算量,又降低了电阻值温漂对测量结果的影响.针对基于步进电机结构的送料控制模块,给出了减少步进电机失步的措施.系统实现了180~250℃,±1℃精度的恒温控制,为FDM型3D打印机系统的恒温和高精度进料提供了保障,并且在简单调整后,还可对湿度、压力、位移和角度等物理量进行控制.

关键词: 3D打印机PIDPWM恒温控制    
Abstract:

In order to improve accuracy and quality of print moldings, high-precision feed system based on 3D printer of FDM and the implement method is improved. This system used IRF530N power tube, heating pipe and PWM as a Heating Module; Pt100 platinum thermistor, differential amplifier circuit and PID Algorithm as a Temperature Measuring and Controlling Module. It not only simplified the calculation of scale changes, but also reduced the influence of the measurement of resistance drift. Based on feeding control module of the stepping motor, some measures for reducing the phenomenon of the stepper motor which losed step were given. The realization of constant temperature control of 180-250℃ range, ±1℃ accuracy can guarantee the constant temperature and high precision feeding of 3D printer of FDM. It can also be used to control the humidity, pressure, displacement and angle and other physical quantities.

Key words: 3D printer    PID    PWM    thermostatical control
收稿日期: 2016-03-09 出版日期: 2016-10-28
CLC:  TP272  
基金资助:

河南省科技攻关项目(152102210204,152102210020)

通讯作者: 王春霞(1980-),女,河南焦作人,硕士,讲师,从事电子技术研究,E-mail:wcxwlx@163.com.     E-mail: wcxwlx@163.com
作者简介: 司国斌(1979-),男,河南焦作人,讲师,硕士,从事自动化控制研究,E-mail:15216471@qq.com.http://orcid.org//0000-0002-8315-7163
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
司国斌
王春霞
靳孝峰

引用本文:

司国斌, 王春霞, 靳孝峰. FDM型3D打印机的高精度进料系统研究[J]. 工程设计学报, 2016, 23(5): 497-500,512.

SI Guo-bin, WANG Chun-xia, JIN Xiao-feng. Research for high-precision feed system based on 3D printer of FDM. Chinese Journal of Engineering Design, 2016, 23(5): 497-500,512.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.05.013        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I5/497

[1] 刘媛媛,张付华,陈伟华. 面向3D打印复合工艺的生物CAD/CAM系统及试验研究[J].机械工程学报,2014,50(15):147-153. LIU Yuan-yuan, ZHANG Fu-hua, CHEN Wei-hua. CAD/CAM system and experimental study of biological 3D printing composite process[J].Journal of Mechanical Engineering, 2014, 50(15):147-153.
[2] 王海军,黄卫东. 矿机易损设备3D打印修复技术的应用初探[J].煤炭工程,2014,46(12):72-74. WANG Hai-jun, HUANG Wei-dong. Discussion on application of 3D printing and repair technology to easily worn equipment of mine machinery[J].Coal Engineering, 2014, 46(12):72-74.
[3] 谭秀腾,郭小定,李小龙. 基于ARM的桌面型3D打印机控制系统设计[J]. 应用科技, 2014,41(5):57-61. TAN Xiu-teng,GUO Xiao-ding,LI Xiao-long. Design of desktop 3D printer control system based on ARM[J]. Applied Science and Technology, 2014, 41(5):57-61.
[4] 阴贺生,赵文豪,宋杰,等. 基于三臂并联结构的桌面3D打印机[J]. 机械, 2015, 42(2): 36-40. YIN He-sheng, ZHAO Wen-hao, SONG Jie, et al. A desktop 3D printer based on delta structure[J]. Machinery, 2015, 42(2): 36-40.
[5] 严长城,应贵平.基于PT100铂热电阻的高精度测温系统的设计[J].机电工程技术,2015,44(3):71-74. YAN Chang-cheng, YING Gui-ping. The design of a temperature collection system with high precision based on PT100[J].Mechanical & Electrical Engineering Technology, 2015, 44(3):71-74.
[6] 赵宇佳,姜汉钧,张羊,等. 一种超低功耗高精度温度传感器芯片设计[J].微电子学与计算机,2015,12(1):40-43. ZHAO Yu-jia, JIANG Han-jun, ZHANG Yang, et al. A novel ultra-low power temperature sensor IC with high precision[J].Microelectronics & Computer, 2015,12(1):40-43.
[7] 张军. 基于ARM的高精度PID温度控制器[J].仪表技术与传感器,2013,50(10):65-66. ZHANG Jun. ARM-based high-precision PID temperature controller[J].Instrument Technique and Sensor, 2013, 50(10):65-66.
[8] 闫兵,马琰. 单螺杆挤出机温度时变性与非线性控制的解决方法[J].计算机测量与控制,2014,22(4):1076-1078. YAN Bing, MA Yan. Single screw extruder temperature time-varying and non-linear control solution[J]. Computer Measurement & Control, 2014, 22(4):1076-1078.
[9] 马洪涛. 基于PID的波峰焊温度控制研究[J].加热热工艺,2013,42(9):205-207. MA Hong-tao. Temperature control of wave soldering based on PID technology[J].Hot Working Technology, 2013, 42(9):205-207.
[10] 谭宝成,康祖清.模糊PID算法在定型机温控系统上的应用[J].西安工业大学学报,2012,32(11):895-898. TAN Bao-cheng, KANG Zu-qing. Application of fuzzy-PID to boarding machine temperature control system[J].Journal of Xi'an Technological University, 2012, 32(11):895-898.
[11] 李茂军,刘鼎邦. 步进电机细分驱动电磁转矩分析[J].控制工程,2013,20(2):243-245. LI Mao-jun, LIU Ding-bang. Study on electromagnetic torque of stepping motor subdivided driving[J].Control Engineering of China, 2013, 20(2):243-245.
[12] 李敬一,王会彬.基于PID算法的步进电机位置控制[J].军民两用技术与产品,2015,4(1):55-57. LI Jing-yi, WANG Hui-bin. Position control method based on PID algorithm for stepper motor[J].Dual Use Technologies & Products, 2015, 4(1):55-57.
[13] 孙孔政,徐抒岩,曹小涛,等. 基于矩频曲线的步进电机加减速控制[J].微电机,2014,47(1):81-85. SUN Kong-zheng, XU Shu-yan, CAO Xiao-tao, et al. Speed control of step motor based on torque curve[J].Micromotors, 2014, 47(1):81-85.
[14] 肖汉波.基于EV10AQ190的高速ADC接口设计[J].电子器件,2015,38(3):569-575. XIAO Han-bo. Design of interface circuit for high speed ADC based on EV10AQ190[J]. Chinese Journal of Electron Devices, 2015, 38(3):569-575
[15] 孙建涛,马小兵,陈兵,等.一种基于片同步技术的高速接口电路设计方法[J].测试技术学报,2008,22(5):442-448. SUN Jian-tao, MA Xiao-bing, CHEN Bing, et al. Design of high-speed interface circuits with chipsync technology[J].Journal of Test and Measurement Technology, 2008, 22(5):442-448.

[1] 潘盛湖, 刘云强, 胡涵, 张小军, 冯一夫. 基于多喷头并联的3D打印机控制系统的研究[J]. 工程设计学报, 2022, 29(1): 100-106.
[2] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[3] 任雯, 赖森财. 压电式提花经编机自升压节能控制电路设计[J]. 工程设计学报, 2020, 27(3): 326-331.
[4] 郑华林, 杨舜波, 潘盛湖, 王超. 百叶片定长切料-自动排片控制系统研究[J]. 工程设计学报, 2019, 26(4): 461-468.
[5] 王莉, 张士兵. 基于CPSO-BP神经网络-PID的热熔胶机温控系统研究[J]. 工程设计学报, 2017, 24(5): 588-594.
[6] 陈馈, 牛彦杰, 李阁强, 徐莉萍, 郭冰菁. 基于单神经元PID的盾构推进系统同步控制研究[J]. 工程设计学报, 2017, 24(3): 330-336.
[7] 潘春荣, 许化. 基于STM32的X型四旋翼无人机设计[J]. 工程设计学报, 2017, 24(2): 196-202,210.
[8] 王爱国, 陈健伟. 基于MATLAB的3-RPS并联机构控制系统仿真[J]. 工程设计学报, 2016, 23(2): 172-180.
[9] 杨前明,孔令奇,李 健,王世刚,郭建伟. 电液比例马达速度同步控制系统建模与仿真[J]. 工程设计学报, 2015, 22(5): 330-336.
[10] 杨前明,孔令奇,李 健,王世刚,郭建伟. 电液比例马达速度同步控制系统建模与仿真[J]. 工程设计学报, 2015, 22(4): 330-336.
[11] 谢 苗,刘治翔,毛 君. 综掘巷道超前支护装备多缸同步控制方法研究[J]. 工程设计学报, 2015, 22(2): 193-200.
[12] 董胜, 袁朝辉. 舵机电液伺服加载复合控制方法研究[J]. 工程设计学报, 2013, 20(6): 539-544.
[13] 张琨英. 基于PLC的磨削液变频恒压供给系统设计[J]. 工程设计学报, 2013, 20(2): 168-172.
[14] 顾星, 钟鸣, 姚玉峰. 基于模糊自适应PID的加样臂位置控制[J]. 工程设计学报, 2012, 19(5): 385-390.
[15] 陈松, 宋晓琳. 基于DSP的智能小车路径跟随系统设计[J]. 工程设计学报, 2012, 19(4): 312-317.