Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 182-190    DOI: 10.3785/j.issn.1006-754X.2025.04.135
机器人与机构设计     
基于Kresling折纸结构的气动爬壁机器人设计与性能分析
楚凯(),张宇,王家梁,周浩,舒申,胡俊峰()
江西理工大学 机电工程学院,江西 赣州 341000
Design and performance analysis of pneumatic wall-climbing robot based on Kresling origami structure
Kai CHU(),Yu ZHANG,Jialiang WANG,Hao ZHOU,Shen SHU,Junfeng HU()
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(4962 KB)   HTML
摘要:

以柔性材料为主体的软体爬壁机器人可通过被动变形或主动变形来改变自身形状,以适应复杂的壁面环境。但由于柔性材料的低刚度和滞后性,现有软体爬壁机器人普遍存在驱动力不足及运动稳定性差的问题,严重制约了其实际应用。针对该问题,基于Kresling折纸结构设计了一种可灵活爬行的气动爬壁机器人。该机器人由锚定模块和伸缩模块组成,锚定模块利用吸盘在负压状态下的吸附作用来实现在壁面上的锚定,伸缩模块采用以Kresling折纸结构和塑料薄膜封皮为主体的软连续体结构,可实现伸展和收缩。通过实验测得,所设计的机器人可在坡度为0°~90°的光滑壁面上实现速度为25~28 mm/s的稳定爬行,且对不同材质的壁面均具有良好的适应性。结果表明,基于Kresling折纸结构的气动爬壁机器人不仅能够在不同坡度、不同材质的壁面上双向爬行,还能基于伸缩模块的柔顺性在壁面上灵活转弯,这可为软体爬壁机器人的设计和优化提供新思路。

关键词: 软体爬壁机器人软连续体结构Kresling折纸结构适应性双向爬行    
Abstract:

The soft wall-climbing robot with flexible materials as the main body can change its shape through passive deformation or active deformation to adapt to the complex wall environment. However, due to the low stiffness and lag of flexible materials, the existing soft wall-climbing robots generally suffer from insufficient driving force and poor motion stability, which seriously restricts their practical applications. Aiming at this problem, a flexible pneumatic wall-climbing robot based on the Kresling origami structure was designed. This robot composed of anchoring modules and telescopic modules. The anchoring module achieved anchoring on the wall by the adsorption effect of suction cups under negative pressure. The telescopic module adopted a soft continuum structure with Kresling origami structure and plastic film cover as the main body, achieving extension and contraction. The experimental results indicated that the designed robot could achieve stable crawling at a speed of 25-28 mm/s on the smooth wall with a slope of 0°-90°, and had good adaptability to walls of different materials. The results show that the pneumatic wall-climbing robot based on the Kresling origami structure can not only crawl bidirectionally on walls of different slopes and materials, but also flexibly turn on walls based on the flexibility of the telescopic module, which can provide new ideas for the design and optimization of soft wall-climbing robots.

Key words: soft wall-climbing robot    soft continuum structure    Kresling origami structure    adaptability    bidirectional crawling
收稿日期: 2024-04-30 出版日期: 2025-05-06
CLC:  TH 138  
基金资助: 国家自然科学基金资助项目(52165011);江西省自然科学基金资助项目(20212BAB204028);江西省自然科学基金重点项目(联合资助)(20202ACBL204009);江西省研究生创新专项资金项目(YC2023-S652)
通讯作者: 胡俊峰     E-mail: 323257593@qq.com;hjfsuper@126.com
作者简介: 楚 凯(1997—),男,硕士生,从事软体机器人研究,E-mail: 323257593@qq.com,https://orcid.org/0009-0006-0259-6583
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
楚凯
张宇
王家梁
周浩
舒申
胡俊峰

引用本文:

楚凯,张宇,王家梁,周浩,舒申,胡俊峰. 基于Kresling折纸结构的气动爬壁机器人设计与性能分析[J]. 工程设计学报, 2025, 32(2): 182-190.

Kai CHU,Yu ZHANG,Jialiang WANG,Hao ZHOU,Shen SHU,Junfeng HU. Design and performance analysis of pneumatic wall-climbing robot based on Kresling origami structure[J]. Chinese Journal of Engineering Design, 2025, 32(2): 182-190.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.135        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/182

图1  基于Kresling折纸结构的气动爬壁机器人结构
图2  机器人直线爬行运动示意
图3  机器人转弯运动示意
图4  伸缩模块结构及其运动示意
图5  Kresling折纸结构
图6  伸缩模块的测力实验平台及拉伸力测量结果
图7  Kresling折纸结构厚度不同时伸缩模块的收缩量及收缩速率
图8  Kresling折纸结构层数不同时伸缩模块的刚度对比
图9  Kresling折纸结构层数不同时机器人的回弹力和侧向力
图10  机器人样机与控制系统
图11  机器人的单向竖直爬壁过程
图12  机器人的双向竖直爬壁过程
图13  机器人负重爬行实验装置及结果
图14  机器人转弯过程(驱动气压为-50 kPa)
图15  不同驱动气压下机器人的转弯时间对比
图16  机器人在不同壁面上的爬行速度对比
图17  机器人在不同壁面上的爬行演示(驱动气压为-35 kPa)
图18  机器人在竖直壁面上的避障爬行过程
1 NANSAI S, MOHAN R E. A survey of wall climbing robots: recent advances and challenges[J]. Robotics, 2016, 5(3): 14.
2 SEO T, JEON Y, PARK C, et al. Survey on glass and façade-cleaning robots: climbing mechanisms, cleaning methods, and applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(2): 367-376.
3 CHEN S E, CAO Y T, SARPARAST M, et al. Soft crawling robots: design, actuation, and locomotion[J]. Advanced Materials Technologies, 2020, 5(2): 1900837.
4 DALTORIO K A, WEI T E, HORCHLER A D, et al. Mini-WhegsTM climbs steep surfaces using insect-inspired attachment mechanisms[J]. International Journal of Robotics Research, 2009, 28(2): 285-302.
5 LEE G, KIM H, SEO K, et al. Series of multilinked caterpillar track-type climbing robots[J]. Journal of Field Robotics, 2016, 33(6): 737-750.
6 DE RIVAZ S D, GOLDBERG B, DOSHI N, et al. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion[J]. Science Robotics, 2018, 3(25): eaau3038.
7 MAHMOOD S K, BAKHY S H, TAWFIK M A. Propeller-type wall-climbing robots: a review[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1094: 012106.
8 SHEPHERD R F, ILIEVSKI F, CHOI W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20400-20403.
9 RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
10 TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3): 213-223.
11 YANG H, XU M, LI W H, et al. Design and implementation of a soft robotic arm driven by SMA coils[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6108-6116.
12 LIU Y, CHEN B D, LI W, et al. Bioinspired triboelectric soft robot driven by mechanical energy[J]. Advanced Functional Materials, 2021, 31(38): 2104770.
13 TANG Y C, ZHANG Q T, LIN G J, et al. Switchable adhesion actuator for amphibious climbing soft robot[J]. Soft Robotics, 2018, 5(5): 592-600.
14 GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science, 2016, 352(6288): 978-982.
15 WU Q Y, PRADEEP V, LIU X Y. A paper-based wall-climbing robot enabled by electrostatic adhesion[C]//2018 IEEE International Conference on Soft Robotics. Livorno, Apr. 24-18, 2018.
16 GUO Y G, LIU L W, LIU Y J, et al. Review of dielectric elastomer actuators and their applications in soft robots[J]. Advanced Intelligent Systems, 2021, 3(10): 2000282.
17 胡俊峰, 林茂虎, 王文慧. 微型仿尺蠖软体机器人的设计与实验[J]. 传感器与微系统, 2021, 40(8): 106-109.
HU J F, LIN M H, WANG W H. Design and experiment of miniature inchworm-like soft robot[J]. Transducer and Microsystem Technologies, 2021, 40(8): 106-109.
18 FU H C, HO J D L, LEE K H, et al. Interfacing soft and hard: a spring reinforced actuator[J]. Soft Robotics, 2020, 7(1): 44-58.
19 ZHANG Y F, YANG D Z, YAN P N, et al. Inchworm inspired multimodal soft robots with crawling, climbing, and transitioning locomotion[J]. IEEE Transactions on Robotics, 2022, 38(3): 1806-1819.
20 YU W K, LI X, CHEN D Y, et al. A minimally designed soft crawling robot for robust locomotion in unstructured pipes[J]. Bioinspiration & Biomimetics, 2022, 17(5): 056001.
21 韩伟涛, 温涛, 刘磊, 等. 基于Kresling折纸结构的软体管道机器人设计[J]. 工程设计学报, 2025, 32(1): 72-81.
HAN W T, WEN T, LIU L, et al. Design of soft pipeline robot based on Kresling origami structure[J]. Chinese Journal of Engineering Design, 2025, 32(1): 72-81.
22 张春松. 灵巧扭动躯干四足机器人运动学建模、步态规划与稳定性分析[D]. 天津: 天津大学, 2019.
ZHANG C S. Kinematics, gait planning and stability analysis for quadruped robots with twisting trunks[D]. Tianjin: Tianjin University, 2019.
[1] 韩伟涛,温涛,刘磊,胡俊峰. 基于Kresling折纸结构的软体管道机器人设计[J]. 工程设计学报, 2025, 32(1): 72-81.
[2] 刘磊,温涛,韩伟涛,胡轩铭,胡俊峰. 快速爬行软体管道机器人的设计与性能分析[J]. 工程设计学报, 2024, 31(5): 614-622.
[3] 陈永亮,刘谱,刘玉坤. 水下摩擦叠焊机可适应架构设计方法[J]. 工程设计学报, 2014, 21(5): 418-425.
[4] 满佳, 张连洪, 陈永亮, 顾佩华. 基于价值工程的可适应性评价方法[J]. 工程设计学报, 2012, 19(4): 250-254.
[5] 陈宁, 王兵, 陈兆兵, 王恒坤, 庄昕宇, 韩旭东. 红外成像系统温度适应性设计[J]. 工程设计学报, 2011, 18(6): 453-456.
[6] 陈永亮, 满佳, 曲艺, 包能胜, 顾佩华. 机械产品可适应性度量方法及应用[J]. 工程设计学报, 2010, 17(1): 1-11.