Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (5): 554-561    DOI: 10.3785/j.issn.1006-754X.2023.00.060
机械设计理论与方法     
基于点激光的CRTSⅢ型无砟轨道板轮廓尺寸快速检测方法
兰可豪(),李淑娟(),王嘉宾,高向阳,任朋欣
西安理工大学 机械与精密仪器工程学院,陕西 西安 710048
Rapid detection method for contour dimensions of CRTSⅢ ballastless track slab based on point laser
Kehao LAN(),Shujuan LI(),Jiabin WANG,Xiangyang GAO,Pengxin REN
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
 全文: PDF(2423 KB)   HTML
摘要:

CRTSⅢ型无砟轨道板是现代高速铁路运行的基石。但由于轨道板的尺寸较大,且其承轨台的轮廓复杂,对表面精度的要求较高,传统的抽样检测方法无法实现每块轨道板的生产溯源。为此,提出了一种基于点激光测量技术的立式CRTSⅢ型无砟轨道板轮廓尺寸的快速检测方法。首先,采用点激光传感器配合磁栅尺同步采集轨道板及其承轨台轮廓的关键数据。然后,设计了基于差值处理的点激光数据预处理方法,并采用最小二乘法拟合计算关键轮廓尺寸,以实现在轨道板生产线要求的生产节拍内完成轮廓尺寸的自动检测。分别采用所提出的检测方法和三坐标检测法对同一轨道板的9个承轨台进行检测并对比两者的精度,结果显示2种检测方法的测量结果相差较小;利用所提出的检测方法对承轨台的小钳口距进行5次重复测量,结果显示最大极差为0.010 mm。研究结果验证了基于点激光的检测方法具有较高的精度和良好的一致性,能够大幅提高轨道板的检测速度,具有很高的应用价值。

关键词: CRTSⅢ型无砟轨道板立式检测点激光传感器轮廓尺寸    
Abstract:

CRTSⅢ ballastless track slab is the cornerstone of modern high-speed railway operation. However, due to the large size of the track slab, the complex contour of the rail support platform and the high requirement of surface accuracy, the traditional sampling inspection methods cannot achieve the production traceability of each track slab. Therefore, a rapid detection method for contour dimensions of vertical CRTSⅢ ballastless track slab based on point laser measurement technology was proposed. Firstly, the key contour data of the track slab and its rail support platform were collected simultaneously by using point laser sensors in conjunction with magnetic grid ruler. Then, a point laser data preprocessing method based on difference processing was designed, and the key contour dimensions were fitted and calculated by using the least square method, so that the automatic detection of contour dimensions was achieved within the production cycle required by the track slab production line. The proposed detection method and the three-coordinate detection method were used to detect nine rail support platforms of the same track slab and their accuracy was compared. The results showed that the difference in measurement results between two detection methods was very small. The proposed detection method was used to measure the small jaw distance of the rail support platform for five times, and the results showed that the maximum range was 0.010 mm. The research results show that the detection method based on point laser has high accuracy and good consistency, which can greatly improve the detection speed of the track plate and has high application value.

Key words: CRTSⅢ ballastless track slab    vertical detection    point laser sensor    contour dimension
收稿日期: 2022-06-13 出版日期: 2023-11-03
CLC:  U 216.3  
基金资助: 国家自然科学基金资助项目(51575442)
通讯作者: 李淑娟     E-mail: 191737837@qq.com;shujuanli@xaut.edu.cn
作者简介: 兰可豪(2000—),男,陕西宝鸡人,硕士生,从事智能制造研究,E-mail: 191737837@qq.com,https://orcid.org/0000-0002-5647-5975
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
兰可豪
李淑娟
王嘉宾
高向阳
任朋欣

引用本文:

兰可豪,李淑娟,王嘉宾,高向阳,任朋欣. 基于点激光的CRTSⅢ型无砟轨道板轮廓尺寸快速检测方法[J]. 工程设计学报, 2023, 30(5): 554-561.

Kehao LAN,Shujuan LI,Jiabin WANG,Xiangyang GAO,Pengxin REN. Rapid detection method for contour dimensions of CRTSⅢ ballastless track slab based on point laser[J]. Chinese Journal of Engineering Design, 2023, 30(5): 554-561.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.060        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I5/554

图1  CRTSⅢ型无砟轨道板的结构和主要轮廓尺寸
图2  承轨台的结构及其主要尺寸
图3  CRTSⅢ型无砟轨道板立式检测设备三维模型1—基座;2—背部支撑架;3—横梁;4—点激光传感器;5—检测立板;6—伺服液压缸;7—钢丝绳;8—直线导轨;9—磁栅尺;10—CRTSⅢ型无砟轨道板;11—夹紧装置。
图4  CRTSⅢ型无砟轨道板立式检测设备三维模型背面
图5  CRTSⅢ型无砟轨道板立式检测设备的工作原理
图6  存在异常的原始点激光数据
图7  点激光数据区域分割结果
图8  基于差值处理的点激光数据预处理流程
图9  点激光数据预处理结果
图10  基于最小二乘法的点激光数据拟合流程
图11  承轨台小钳口距拟合计算示意
参数

标准及

公差

承轨台编号
123456789
承轨面夹角/(°)110±1.0110.06110.03110.24110.15110.04109.46110.07109.92110.01
小钳口距/mm375.7±0.5376.08376.00375.97375.83375.88375.98375.92375.83375.88
预埋套管中心距/mm233.3±0.5233.26233.29233.10233.31233.36233.33233.44233.37233.31
大钳口距/mm1 889.8±1.01 889.611 889.581 889.611 889.721 889.591 889.521 889.611 889.491 889.37
表1  基于本文检测方法的承轨台关键轮廓尺寸测量结果(部分)
参数

标准及

公差

承轨台编号
123456789
承轨面夹角/(°)110±1.0110.25110109.88109.93110.00109.57110.02110.07110.20
小钳口距/mm375.7±0.5375.82376.04375.91375.89376.00375.96375.96375.94375.88
预埋套管中心距/mm233.3±0.5233.13232.93233.63233.46233.51233.33233.44233.4233.29
大钳口距/mm1 889.8±1.01 889.531 889.631 889.561 889.571 889.721 889.711 889.471 889.581 889.49
表2  基于三坐标检测法的承轨台关键轮廓尺寸测量结果(部分)
图12  基于不同检测方法的承轨台关键轮廓尺寸对比
次数承轨台编号
123456789
极差0.0080.0060.0020.0100.0070.0060.0060.0080.008
1375.951375.994375.867376.053375.826375.915375.387375.776375.795
2375.947375.991375.867376.043375.822375.915375.389375.782375.801
3375.953375.99375.869376.049375.829375.921375.393375.78375.798
4375.955375.996375.869376.048375.828375.918375.393375.784375.803
5375.953375.993375.867376.043375.823375.919375.393375.781375.800
表3  基于本文检测方法的承轨台小钳口距的5次重复测量结果 (mm)
1 刘增杰,任西冲,张政,等.CRTSⅢ型板式无砟轨道底座凹槽四角裂缝产生机理及结构优化措施研究[J].铁道标准设计,2023,67(2):43-48.
LIU Z J, REN X C, ZHANG Z, et al. Research on generation mechanism and structural optimization measures of four corner cracks in the groove of CRTSⅢ slab ballastless track base[J]. Railway Standard Design, 2023, 67(2): 43-48.
2 LI X M, ZHANG S Y, LIU J. Research on CRTSⅢ ballastless track slab cracks of high-speed railway[J]. Applied Mechanics and Materials, 2013, 443: 69-73.
3 中国铁路总公司. 高速铁路CRTSⅢ型板式无砟轨道先张法预应力混凝土轨道板: [S].北京:中国铁道出版社,2017:16-17.
China Railway Corporation. Pretensioned prestressed concrete slab of CRTSⅢ slab ballastless track of high-speed railway: [S]. Beijing: China Railway Publishing House, 2017: 16-17.
4 简治城.CRTSⅢ型无砟轨道板检测及精调[J].中国铁路,2011(4):38-40. doi:10.3969/j.issn.1001-683X.2011.04.011
JIAN Z C. Inspection and precise adjustment of CRTSⅢ ballastless track [J]. Chinese Railways, 2011(4): 38-40
doi: 10.3969/j.issn.1001-683X.2011.04.011
5 鲁宁生,王红亮.高速铁路CRTSⅢ型无砟轨道板钢模系统设计与应用[J].铁道建筑,2012(5):158-161. doi:10.3969/j.issn.1003-1995.2012.05.049
LU N S, WANG H L. Design and application of steel formwork system for CRTSⅢ ballastless track slab of high-speed railway[J]. Railway Engineering, 2012(5): 158-161.
doi: 10.3969/j.issn.1003-1995.2012.05.049
6 李圆,陈霄,秦飞,等.三维点云在轨道板快速检测中的应用[J].测绘科学,2021,46(1):141-148.
LI Y, CHEN X, QIN F, et al. Application of 3D point cloud data in rapid inspection of track slab[J]. Science of Surveying and Mapping, 2021, 46(1): 141-148.
7 范生宏.基于数字摄影测量的轨道板快速检测关键技术研究[D].北京:中国矿业大学,2014:8-9.
FAN S H. Research on key technologies for track slab quick detection based on digital photogrammetry[D]. Beijing: China University of Mining and Technology, 2014: 8-9.
8 袁凡.CRTSⅢ型无砟轨道板快速检测系统分析与设计 [D].西安:西安理工大学,2020:23-24.
YUAN F. Analysis and design of CRTSⅢ ballastless track slab rapid detection system[D]. Xi’an: Xi’an University of Technology, 2020: 23-24.
9 NOVAKOVIĆ G, LAZAR A, KOVAČIČ S, et al. The usability of terrestrial 3D laser scanning technology for tunnel clearance analysis application[J]. Applied Mechanics and Materials, 2014, 683: 219-224.
10 YANG T, SONG Y, ZHANG W T, et al. Acoustic emission detection using intensity-modulated DFB fiber laser sensor[J]. Chinese Optics Letters, 2016, 14(12): 46-49.
11 ŁABĘCKI P, NOWICKI M, SKRZYPCZYŃSKI P. Characterization of a compact laser scanner as a sensor for legged mobile robots[J]. Management and Production Engineering Review, 2012, 3: 45-52.
12 GOVINDARAJAN M S, WANG J, POST B, et al. Target design and recognition for 2-D localization of indoor mobile robots using a laser sensor[J]. IFAC Proceedings Volumes, 2013, 46(5): 67-74.
13 LÜ Z H, ZHANG Z Y. Build 3D scanner system based on binocular stereo vision[J]. Journal of Computers, 2012, 7(2): 702399404.
14 MUELLER T, JORDAN M, SCHNEIDER T, et al. Measurement of steep edges and undercuts in confocal microscopy[J]. Micron, 2016, 84: 79-95.
15 KHO K W, ZEXIANG S, MALINI O. Hyper-spectral confocal nano-imaging with a 2D super-lens[J]. Optics Express, 2011, 19(3): 2502-2518.
16 ZOU X, ZOU H, LU J. Virtual manipulator-based binocular stereo vision positioning system and errors modelling[J]. Machine Vision and Applications, 2012, 23(1): 43-63.
17 LINDENBERGH R, PFEIFER N, RABBANI T. Accuracy analysis of the Leica HDS3000 and feasibility of tunnel deformation monitoring[C]//Proceedings of the ISPRS Workshop Laser Scanning, Enschede, Netherlands, Sep. 12-14, 2005.
18 许艳.轨道板三维扫描数据处理方法研究[D].石家庄:石家庄铁道大学,2020:5-6.
XU Y. Study on 3D scanning data processing method of track slab[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020: 5-6.
19 LUO Z W, COMESANA D F, ZHENG C J, et al. Near-field acoustic holography with three-dimensional scanning measurements[J]. Journal of Sound and Vibration, 2019, 439: 43-55.
20 许磊.高速铁路Ⅲ型轨道板尺寸快速检测技术研究[J]. 铁道勘察,2016,42(3):5-8. doi:10.3969/j.issn.1672-7479.2016.03.003
XU L. Research on quick detection track slab of high speed railway[J]. Railway Investigation and Surveying, 2016, 42(3): 5-8.
doi: 10.3969/j.issn.1672-7479.2016.03.003
21 薛峰,赵丽科,柴雪松,等.基于图像处理的铁路轨道板裂缝检测研究[J].铁道建筑,2015(12):123-126. doi:10.3969/j.issn.1003-1995.2015.12.32
XUE F, ZHAO L K, CHAI X S, et al. Study on detecting crack in railway track slab based on image processing technology[J]. Railway Engineering, 2015(12): 123-126.
doi: 10.3969/j.issn.1003-1995.2015.12.32
22 杨铭,沈翔.三维激光扫描技术在CRTSⅢ型无砟轨道板检测中的应用[C]//第三届全国BIM学术会议论文集,北京:中国建筑工业出版社,2017:253-256.
YANG M, SHEN X. The application of 3D laser scanning technology in the detection of CRTSⅢ ballastless track slab[C]//Proceedings of the Third National BIM Academic Conference, Beijing: China Architecture & Building Press, 2017: 253-256.
23 李强,汪家雷,王明刚,等.CRTSⅢ型轨道板自动化测量创新技术研究[J].铁道勘察,2018,44(6):7-11.
LI Q, WANG J L, WANG M G, et al. Research on innovative techniques for automatic measurement of CRTSⅢ type track-plate[J]. Railway Investigation and Surveying, 2018, 44(6): 7-11.
No related articles found!